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Chapter /

INTRODUCTION

The publication of "Experimental and Quasi-Experimental

Designs for Research on Teadhing" by D. T. Campbell and

J. C. Stanley in the Handbook of Researdh on Teaching (1963)

represents a major advance in educational-research method-

ology. Already this chapter has become a much-used refer-

ence in numerous departments of psychology and sociology as

well as in schools of education. The.Campbell-Stanley dhap-

ter was a presentation of various designs for the assessment

or comparison of treatment effects with a discussion of

their strengths and weaknesses. "In general, [the multiple-

group time-series design] is an excellent quasi-experimental

design, perhaps the best of the more feasible designs

The availdbility of repeated measurements makes [the design]

particula4y appropriate to research in schools" (Campbell

and Stanley, 1963, p. 227). To date, appropriate inferen-

tial statistical analyses of treatment effects in all types

of time-series experiments have not been developed. Campbell

and Stanley (1963) and Campbell (1963) have lamented the lack

of appropriate analytic techniques for important time-series

quasi-experimental designs.
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Recent developments in mathematical statistics by Box

and Jenkins (1962) and Box and Tiao (1965) provide statisti-

cal models Which may very well fill the need identified by

Campbell and Stanley. Broadly conceived, the Objective of

this project was the investigation of the adequacy of statis-

tical models developed by Box and Tiao for the analysis of

time-series quasi-experiments. This investigation involved

the following: (1) the investigation of the Box-Tiao models

as to their adequacy as descriptions of time-series experi-

mental data, (2) investigation of the possibility of exten-

sion of the models of Box and Tiao to the analysis of more

general classes of time-series quasi-experiments, (3) the

development of computer programs for statistical analysis

based on the models, (4) the application of the models to

the analysis of actual time-series quasi-eXperiments.

The Time-Series Experiment

The time-series experiment was identified and discussed

at length by Campbell and Stanley (1963) in Gage's Handbook

of Researdh on Teaching and by Campbell (1963). This singu-

larly useful design for experimental research has long been

a paradigm for experimentation in the physical sciences.

-2-



In the social sciences, and education, a person or group of

persons might be observed and measured at regular intervals

prior to the introduction of an experimental treatment (T).

Several observations on the group follow the introduction of

T. An abrupt change in the level of the average score for

the group between the observation immediately preceding T

and those following it may indicate a cause and effect rela-

tionship between T and the variable being measured. Note

how in the figure below the introduction of T (a new curric-

ulum pekhaps) appears to have increased the "achievement"

of the class.

Time
1 2 3 4 T 5 6 7 8

A multiple-group time-series quasi-experiment might

involve three treatments (T
1

, T T
3
), each applied simul-

taneously to a different group. One would then compare the

three gains between times 4 and 5. Another modification of

the basic time-series design might be called a dependent-

groups time-series design. In such designs, the same group

3



of persons is involved in multiple time-series designs for

the evaluation of more than one treatment (T) effect.

Analysis of Time-Series Experiments

A crucial problem, identified but not resolved by

Campbell and Stanley, is that of the decision whether the

gain in "adhievement" between times 4 and 5 should be attri-

buted to random fluctuations in the tikae-series curve or to

an outside influence (presumdbly T, the new curriculum).

This is an inferential statistical problem. Campbell and

Stanley (1963) considered several significance-testing pro-

cedures for analysis of the time-series design; in the end,

each procedure suffered either from implausible assumptions

or weaknesses sudh as disregard for most of the data or lack

of power (i.e., failure to produce significant results When

any reasonable observer would attribute an effect to T).

A simple correlated t-test of the difference between

the pre-treatment and post-treatment observations was judged

inappropriate by Campbell and Stanley because it would pro-

duce significant results for nonstationary time-series in

Which no dbrupt change occurred. A test for the deviation

of a value from the regression line derived on all observa-

tions preceding it (Mood, 1950, pp. 297-298) was considered.

-4-



The dependence of this test on the unrealistic (for time-

series analysis) assumption of independent observations

makes it inappropriate. By far the greatest amount of

research into the problem of analysis of time-series exper-

iments has been accomplished under the direction of Donald

T. Campbell at Northwestern University. Much of the work

of Campbell and his associates has not yet been published.

Box and Tiao (1965) presented a statistical model for

the analysis of the change in level of a nonstationary time-

series. The prOblem they considered was that of making

inferences about a possible dhift in the level of a time-

series associated with the occurrence of an event, Which

um have called T. This model (an integrated moving average

model) is based on statistical assumptions likely to be met

in many time-series quasi-experiments. The integrated moving

average model is reported to represent quite well a surpris-

ingly large number of time-series in economics and industry,

but it is practically unknown to behavioral scientists and

educational researchers.

The mere existence of statistical models and analysis

procedures does not guarantee their usefulness for educa-

tional or psychological researdh. The economist and chemist



have many statistical models that are of no use to behavioral

scientists. Response surface methodology (BOX, 1954) was

designed (primarily for the chemist) to answer questions

dbout optimal combinations of many factors; the method is

an invaluable tool for the chemist. However, due to the

generally small ratio of treatment effects to experimental

error Which plagues researchers in the social sciences, they

rarely use response surface methodology. One focus of the

research reported here was to determine Whether the methods

of time-series analysis developed by Box and Tiao suffer

from the same inability to distinguish treatment effects

When they are small compared to error.



The remainder of this report falls into four chapters

and two appendices. In Chapter II, the basic model devel-

oped by Box and Tiao (1965) is applied to actual time-series

experiment data from two separate experiments, one in psych-

ology and the other in educational psychology. In Chapter

III, the same model is applied in a relatively complex

experimental design to analyze data on traffic fatalities

in the state of Connecticut before and after a legislative

crackdown on speeding. A generalization by George C. Tiao

of the basic model -- as yet unpublished -- is applied to

data on the effects of a revision of Germany's divorce laws

in 1900 on the rate of divorce, in Chapter IV. This generw.

alized model incorporates a "drift" parameter whidh accom-

modates series which show either a rise or a fall over time.

In Chapter V a model Which is a particular generalization of

the "drift" model in Chapter IV is presented. The most gen-

eral model in Chapter V incorporates a parameter-to account

for an instantaneous change in the direction of the drift of

a series associated with the introduction of a treatment.

The general model of Chapter V was also developed for this

study by Dr. Tiao. In Appendices A and B appear print outs

of computer programs for the analyses illustrated'in Chap-

ters IV and V, respectively.
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Chapter II

ANALYSIS OF A CLASS OF TIME-SERIES QUASI-EXPERIMENTS

WITH THE BOX-TIAO MODEL

In.a recent article, Box and Tiao (1965) developed a method of

evaluating the change in level between two successive points in time of

a non-stationary time-series. Observations zt are taken at equally

spaced time intervals and one wishes to make inferences about a possible

shift in level of the time-series associated with the occurrence of an

event at a particular point in time. This is precisely the situation

described by Campbell and Stanley (1963) as a time-series quasi-experi

mental design. Several observations are taken before and after the

administration of a treatment, T, e.g., 01 02 03 T 04 05 06. If there

is an abrupt shift in the level of a time-series between the third and

fourth observations, evidence of a treatment effect may exist. Campbell

and Stanley recognized the shortcomings in the statistical tests they

suggested as possible analytic techniques (Campbell, 1963; Campbell and

Stanley, 1963). The model and statistical techniques developed by Box

and Tiao (1965) appear to be the most suitable methods now available

which might have application to the analysis of timeseries quasi-

experiments.

The statistical model underlying the Box-Tiao analysis.of change

in level of a time-series is the integrated moving average model.

t-1
z
1
= a

1
and zt=L+y E .a

t-1

for the n
1

observations prior to the introduction of T, and

*Equation numbers are the same as those in Box and Tiao (1965).

9

(3.1a)*
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t-1
zt = L + 8 + ,E 0:4

i=1
(3.1b)

for the n2 = N - ni observations following T, where:

zt is the value of the variable observed at time t,

L is a fixed but unknown location parameter,

y is a parameter descriptive of the degree of

interdependence of the observations in the time-series and

takes values 0 < y < 2,

a't is a random normal deviate with mean 0 and variance 02.

5 is the change in level of the time-series caused by T.

Essentially the model implies that the system is subjected to periodic

random shocks (at) a proportion (r) of which are absorbed into the level of the

series. Data which conform to the model in (3.1a) evidence the following

properties (among others):

1. The graph of the time-series follows an erratic,

somewhat random path with slight, but no systematic

drifts, trends, or cycles.

2. The correlogram (i.e., the graph of the auto-

correlations) of the observations, zt, does not

"die out," (i.e., does not tend systematically

toward zero as the lag between values correlated

increases) nor does it show cycles characteristic

of cyclic time-series.

3. For the N-1 differences between adjacent

observations, zt - the lag 1 correlation

equals (y - 1)1[1 + (T. - 1)2] and all higher lag

correlations equal zero.
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t-2
By setting yl = zl, and yt = zt - r E (1 - zt.a.j, the model can

j=1

be written asYsThewhereXis defined as anNx2 matrix of weights as

follows:

XT
1 (1 - r) . . . (1 i (1 - (1 r)N-1

0 0 . . . 0 I 1 (1 - y). . (1 - r)n2-1

is a 2 x 1 vector containing as elements L and 8 and e is an N x 1 vector of

random normal deviates, eT = (01 ... 00 , the elements of which have mean 0

and variance 2
.

When y is known, simple least squares estimates of L and 8 can be

found from the familiar solution to the least-squares normal equations:

zs [I] 0A0 1 TX Y (3.4)

Box and Tiao showed that the least squares estimate of 8, namely, 8,

has a t distribution with N - 2 df when divided by an appropriate estimate of its

standard error.

When y is unknown (as will generally be true) a Bayesian analysis using

sample information about y is used in making inferences about 5. The posterior

distribution, h(y)z), of r given a set of N observations and assuming a uniform

prior distribution is known to within a constant of proportionalify.

h(ylz) oc y(2-r) (s2)4(N -2
(5.8)

[1-(1- 02n2]

where s2 is the residual variance and is given by

s2 = - 02fte), (3.18)
N-2

for a given value of ya.

0



Computing Procedures

The present program performs the following operations:

1. The correlograms (autocorrelations for lag 1 through lag 3n1/4 or 3n2/4)

are calculated for zt and for zt - zt.1 separately for pretreatment and

posttreatment data.

2. The posterior distribution, h(y)z), of y given the data z for a uniform :rior

distribution is claculated and plotted. The value of h(ylz) is found for

200 values of y from .01 to 2.00 in steps of .01. For each of these 200

values of y,

3. 113i is calculated,

4. The variance error of 8 is calculated

5. The t-statistic equal to the ratio of T to its standard error is calculated

and plotted on a graph which is superimposed on the graph of h(r(z).

Formation of the matrix of weights X in (3.3) raises problems with

"underflow." As r approaches 1.0, successive elements of X get very small.

Consequently, when Ixtil < 1.0 x 10'15, the effects of the weights can be

considered negligible and each subsequent value of xt1 is set equal to zero for

that y The same problem and treatment apply to xt2.

The vector 0 is formed by equation(3.4.)and the residual-variance s2

/.
calculated from formula (3.18). The standard error of 8 is given by

t'(I r) 11,j s2r (2-r1 J1-(1.y.)211.1 CR.2)

1140(140ro)2111)(1(1,0r0)2n21(N4)

The t value for testing the significance of the difference of S from

0 S.s given by tin 1/6.(gly).

-.12



Special problems of computer accuracy arise in the calculation of the

posterior distribution of y. When s2 is large, the posterior distribution can

be very small, since 5'(N-2) is a multiplicative factor in formula (5.8). To

prevent any problems associated with this calculation, all factors are transformed

to 12810 prior to the calculation of the ordinates of the posterior distribution,

which are then transformed by subtracting the largest value thus obtained. Thus,

all values of the posterior distribution are divided by the maximum value. With

one slight exception, antilogs are taken to restore the values to their original

form. The exception is that when the 12g of a given value differs from the 1.2g

of the maximum value by more than 35 (i.e. , given value // maximum value < 10'35)

the value of the ordinate corresponding to the given' value is set equal to zero.

Each of the values oft, a
ir)

t, h(ylz), is stored for each

value of y. (rhe values of the posterior distribution of y are rescaled by.

fitting trapezoids so that the curve has unit area.)

Illustrative Analysis

An illustrative analysis will be performed on data from an experiment

by Deese and Carpenter which was adapted for presentation in Brown (1961, pp. 118-

119). Two groups of rats were given 24 training trials in running a short alley

for food. Group A had been fed wet mash for one hour prior to the experiment;

group B had not eaten for 22 hours. After 24 trials the conditions were

reversed, group A being deprived of food for 22 hours and group B being fed for

one hour prior to a final eight trials. Observations were made of the length of

time between start of a trial and a running response for each rat. Observations

were converted to logarithms of this latency period for each rat which were then

averaged and divided into 1 for both groups. The reciprocala of the average log

13
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latencies for groups A and B.over 32 trials appear in Figure 1. Data for Group

B (high drive followed by low drive state) appear as the solid line, the broken

line is for Group A.

Figure 1 about here

The significance of the effect of shifting from a low drive state to a

high drive state (Group A) is apparent and would not be enhanced by further

statistical analysis. However, the significance of the slight downward shift

between the 24th and 25th trials for Group B is worthy of further investigation.

Assuming that the fundamental time-series process generating the series

is the same for both Groups A and B,,the ni = 24 pretreatment observations for

both groups should provide a reasonably good, though somewhat unstable, estimate

of the correlograms for raw data, zt, and differences, zt zt.l. The n2 = 8

posttreatment observations are insufficient in number to add any substantial

information concerning the fit of the model. Even the small number of pretreat-

ment observations probably represents fewer than a minimal number from which one

may draw inferences about the fit of the model with any confidence. The correlo-

grams for Groups A and B for the data in Figure 1 were calculated. To conserve

space these correlograms are not reproduced here. These two sets of autocorrela-

tions evidenced neither cycles nor systematic dampening effects characteristic of

time series of types other than moving average series. On the basis of inspec-

tion of Figure 1 and the correlograms of the original data.we can continue to

entertain the model of equations (3.1a) and (3.1b).

The adequacy of the model is further investigated by observing the

correlogram of the differences between adjacent observations in a series, i.e.,

-14-.



the correlogram of zt.1.1 - zt, t = 1, ..., N-1.The correlograms were calculated

for the pretreatment data in Figure 1. The lag 1 through lag 10 autocorrelations

of the differences between successive observations appear in Figure 2.

Figure 2 about here

The correlogram for zt zt.1 where zt conforms to the model in (3.1a)

should show a lag 1 correlation of (le - 1) [1 + - 1)2] and lag k autocorrela-

tions of zero (k > 1). For sample data, an approximation to the standard error

of an autocorrelation coefficient due to Bartlett (1946) is availablc. The

slanted, straight lines at the top and bottom of Figure 2 mark off a distance of

two standard errors of the autocorrelation coefficient of lag k, 20rk. Note

that only one (lag 9 - Group B) of the 18 autocorrelation coefficients in ?igure

2 lies in a region of rejection that the population value of an autocorrelation

of lag greater than 1 is zero.

As will be seen later, the maximum likelihood estimates of y are 0 and

.25 for Groups A and B, respectively. The lag 1 autocorrelation for group A is

almost equal to the expected (on the basis of the model) value of (le 1)1[1 +

(r 1)2] = -.50. If the model fits exactly, one would expect a lag 1 auto-

correlation for Group B of (.25 - 1)1[1 + (-75)2] = -.48. The obtained value

of -.28 does not differ significantly from this expected value. Acknowledging

the limited power of these statistical tests and the fact that to accept uncriti-

cally a model on the basis of so few observations is largely a matter of faith,

we proceed with the analysis of the data for Group B assuming that the model of

(3.1a) and (3.1b) holds.
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In Figure 3 appear the following: (a) the posterior distribution .

of y, which indicates the likely values which y might assume for these

data (the maximum likelihood estimate of y is found by noting that value

of y under the peak of the curve); (b) the t-statistic used in testing

the hypothesis that 6, the shift in level of the series associated with

the events between trials 24 and 25, is equal to zero; (c) the values

(dotted lines) of t needed for significance at the .15, .10 and .05

levels in testing the hypothesis ho: 6 = 0 against the hypothesis

6 < O. Note that if y = .20, Ho can be rejected at the .05 level

in favor of Hi. If y is .50 or above (which appears relatively unlikely),

H
0

cannot be rejected at the .15 level. Our impression is that the data

do indicate a statistically significant shift downward after the 24th

trial for Group B.

The data in Figure 4 are the number of times in a 50-minute period

in school that a four-year-old hyperactive child changed activities over

28 consecutive days. (Allen at al., 1967) For the last seven days,

the child was given verbal, social reinforcement for attending to a

single activity for more than a minute. The question: Is there a

decrease in activity changes associated with introduction of reinforce-

ment of attending behavior between days 21 and 22?

The decrease of approximately 25 activities in 50 minutes from day

21 to day 22 is less than the "natural" decrease of the time-series

between days 3 and 4 and days 14 and 15. Can the activity of the time-

series over the last seven days be viewed as the regular progression of

the time-series over the first 21 days? An inferential statistical

analysis will illuminate these data.

-16-



The data in Figure 4 show neither upward nor downward trends nor

cycles. The lag 1 autocorrelation coefficient for the differences

between successive pre-treatment observations is -.5, which corresponds

closely to the expected value when y = 0 (which is the maximum likeli-

hood estimate of y for these data). The other autocorrelations for the

differences are not significantly different from zero. Thus the data

in Figure 4 appear to conform to the model.

As was pointed out earlier, the objective of the analysis of a pos-

sible change in level of a time-series of the integrated moving average

type is to obtain a least-squares estimate of 6 and a distributional

statement about the estimate. Provided y is known, this objective is

relatively easily attained. The least-squares estimate of 6, namely

and an estimate of its standard error were given in Box and Tiao in their

1965 paper. Under suitable assumptions of normality and independence of

errors, (a 6)/a(6) has a t-distribution with n
1
+ n

2
- 2 degrees of

freedom. A test of the hypothesis that 6 = 0 can be carried out with

A A A
the test statistic t = 6/0(6).

However, if y is not known (as is generally true), it is necessary

to obtain information from the sample of N observations about probable

values for y. Either of two strategies might be followed: 1) find the

maximum likelihood estimate of y and estimate a and ka, using only that

maximum likelihood estimate, 2) plot both the likelihood distribution of

y and the value of t = 8/(54) against the value of 'y as it ranges between

0 and 2 and see if the t-statistic is clearly significant or non-signi

ficant over the range of probable values for y. [The likelihood distri-

bution of y given the N sample observations is given in Box and Tiao

17



(1965)J Both strategies will be employed at differcnt points in the analy-

ses to follow.

Of course, y is unknown. The likelihood distribution of y given

the data is plotted as h(ylz) in Figure 5. The chances are practically

nil that y is above .10; the maximum likelihood estimate of y is zero.

Over the range of likely values of y, 0 to .10, the value of t for

testing the hypothesis that 6 = 0 is clearlY statistically significant

(t is never greater than -4.4). Without much question, then, the intro-

duction cf the treatment at day 21 worked an effect upon the rate of

activity change.
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Figure 2. Autocorrelations (lag 1 through lag 10) for differences between
adjacent observations in the two time-series in Figure 1.
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Chapter III

ANALYSIS OF DATA

ON THE CONNECTICUT SPEEDING CRACKDOWN

AS A TIME-SERIES QUASI-EXPERIMENT

In late 1955 in Connecticut, the number of fatalities per 100,000

population in motor vehicle accidents reached a record high for the

1950's. On December 23, 1955, Governor Abraham Ribicoff took unpre-

cedented legislative action to reduce traffic fatalities. Ribicoff

announced that persons convicted of speeding would have their li-

censes suspended for thirty days at the first offense, for sixty

days at the second offense, and f,.)r an indefinite period (subject

to a hearing after ninety days) at the third offense. Data on traf-

fic fatalities before and after the Connecticut crackdown on speed-

ing can be regarded as a time-series quasi-experiment (Campbell and

Stanley, 1963; Campbell, 1963) with some significance for the social

sciences. When supplemented with traffic fatality data for the states

of Massachusetts, Rhode Island, New York, and New Jersey; the col-

lection of observations can be viewed as a multiple-group time-series

experiment (Campbell and Stanley, 1963; Campbell, 1963). The mul-

tiple-group time-series design can be diagrammed as follows:
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Conn.: ...0
Mass.: ...0
R.I. : ...0

: ...0
N.J. : ...0

Time
n
1

n
1
+ 1 n

1
+ 2...

411111*.

0...
0...
0...
0...
0...

The O's represent monthly observations of traffic fatalities

for the nl months prior to T, the treatment, and for the n2 observa-

tions following T. The treatment, T, is the Governor's crackdown on

speeding in the state of Connecticut. No comparable alteration of

the legislation of the four "control" states took place.

Evidence of the effectiveness of the Connecticut crackdown'on

speeding can be gained by comparing the path of the post-T observa-

tions of Connecticut with those of the four control states. A sharp

drop in fatalities in Connecticut following T in the absence of simi-

lar drops in the control states is compelling evidence of the effect-

iveness of the crackdown on speeding.

The problem of measuring the abrupt change in level of a time-

series and making statistical inferential statements about it .64 the

problem with which the remainder of this report is concerned.

Analysis of Data

The Underlying Model

The statistical model upon which analysis of the Connecticut

speeding data is based was developed by Box and Tiao (1965). Box

and Tiao presented an analytic technique for estimating and making
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inferences about the change in level of a non-stationary time-series.

The model upon which the analysis is based is a restrictive one; how-

ever, many sets of data can be manipulated or transformed into special

indices in such a way that the assumptions of the model will be large-

ly met. The statistical model here employed is a special case of the

integrated moving average process (Box and Jenkins, 1962):
t-1

zt =L+y Z C4 t.j+ at,t= 1, , n
j=1

L is a "location parameter" descriptive of the over-all general
level of the series,
y is a. parameter which depends upon the interdependency of the
observations in the time-series, and
at is an observation of a random normal varidble with mean 0
and variance a2 .

Formula (1) describes the nl'Observations taken prior to the

(1)

introduction of a treatment, e.g., the Connecticut crackdown on speed-

ing. The n2 observations following the introduction of the treatment

into the time-series differ from (1) only in that a treatment effect,

61 is present.

t-1
zt = L +Y E cgt_j+ c4 t+ 6 1 t = n2, ... , nl + n2.

j=1

The parameter 6 is the increment or decrement in the level of

(2)

the time-series due to the introduction of the treatment. The treat-

ment is assumed to work an immediate and constant effect, 61 upon the

time-series.

The fundamental time-series model regards the system as being

subjected to periodic random shocks, the at, (which have zero mean).

Furthermore, a proportion,y, of each shock is assumed to remain in

the system to influence the movement of the system through time.
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Hence, the effect of some extraneous, random influence on the system

is not immediately dissipated but continues to work a lessened in-

fluence on subsequent observations. In a sense, the model describes

the path of a point taking a random walk which is imbedded in "noise."

If the value of Y is known, least-squares estimates of L, which

is generally of no interest, and 6, which is of primary interests can

be readily Obtained (see formulas 3.7 and 3.8 in Box and Tiao, 1965).

However, one is unlikely to know the value of y. Not knowing y, one

may use sample information to determine probable values for Y. Box

and Tiao (1965) presented a Bayesian approadh to obtaining informa-

tion about the value of Y. When a uniform prior distribution is set

on Yi the Bayesian analysis is equivalent to inspecting the likelihood

function of y. The likelihood of y as a function of the sample data

is given in equation (5.8) in Box and Tiao (1965).

The analytic strategy which the Box-Tiao procedure leads to in

most instances is one of calculating the likelihood. distribution of

Y from the data, finding an estimate of 6 and its standard error for

all values of Y from 0 to 2.0, and setting confidence intervals around

the estimate of 6 or testing the significance of the difference of

the estimate of 6 from zero for the likely values of y.

However, before such an analysis of data may proceed, an effort

must be made to check the appropriateness of the model in (1) and (2)

for the data in hand. This can be done in large part by inspecting

the graph of the time-series and of the correlograms of the data.

Data which conform to the model in (1) and (2) will have the follow

ing properties:
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1. There will be an absence of cycles in the original data, i.e.,
the nl + 112 observations zt. The data will appear to fluc-

tuate around a constant elevation, L, with only minor or
momentary drifts away from this baseline. In other words,
sustained "drifts" from a baseline in one direction prdbably
indicate a violation of the model, viz., at probably has a
non-zero mean.

2. The correlogram of the original data, the zt, is free of

cycles and shows a random fluctuation around a baseline. The
correlogram does not show the familiar damped cyclic curve
characteristic of autoregressive time-series. (In a time-
series quasi-experiment it is necessary to calculate correlo-
grams separately for pre-treatment and post-treatment obser-
vations, since a large treatment effect will produce strong
lag correlations.)

3. The correlogram of the differences between successive obser-
vations in the time series, i.e., the correlogram for

- z
1

(t = 2, . n + n ) has'a lag 1 correlationzt
t- . .

which is larga in absolute value when Y deviates from 1.0
and all higher lag correlations are near zero. In fact,

co
v

(z
t

z
t-1,

z
t+1

- z
t
) = - (1 - y)a 2 and cov(z - z ,

t-1

t+k zt+k-1) = 0 for k > 1. The associated lag 1 auto-

- (1 -y )
correlation of the differences is

1 -I- (1 - y)2

For example, if y = 1, all lag correlations of the differ-
ences between successive values are expected to be zero.
Fortunately, approximate hypothesis tests are available for
testing the significance of the lag correlations (Bartlett,
1946).

Investioation of the Fit of the Model to the Data

The basic data were traffic fatalities for the 60 months prior

to the Connecticut speeding crackdown in January 1956 and for the

subsequent 40 months for Connecticut, Massachusetts, Rhode Island

New York and New Jersey. As the first step in the investigation of

the fit of the integrated moving average model to these data, each

monthly fatalities count was divided by the number of miles driven

in the state during that month. The transformed raw data thus became
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"monthly fatalities per 100,0008000 miles driven" for all five states.

Such a transformation would effectively eliminate any upward linear

trend in the data (no sudh trend may appear in the integrated moving

average process in equation (1)] due to increases in population,

number of drivers, number of cars, etc.

/nspection of the plot of "monthly fatalities per 100,000,000

driver miles" showed marked yearly cycles, as one might expect. The

"peaks" of the cycles coincided with the winter months (Dec. - Feb.);

the "valleys° occurred during the summer. Such cycles are a clear

violation of the assumptions of the integrated moving average model.

The correlogram for "fatalities/10080008000'miles" for Connecticut

showed the "damped sine curve" with a period of 12 months which is

characteristic of data possessing yearly cycles. (The manner in

which the cycles were removed from the data will be discussed later.)

It will be instructive for the moment to observe the "monthly fatal-

ities per 100,000,000 driver miles" with the cycles left in. These

data appear in Figure 1.

It can be seen in Figure 1 that the fatalities per 100,000,000

driver miles reached the highest point in the period 1951-1955 in

December, 1955. To the extent that this "emergency" prompted

Ribicoff's decision to 'crack down on speeding in late December, 19558

the decline ammediately following the crackdown can be partly inter-

preted as the natural tendency of observations chosen for their ex-

tremity to regress toward a central value.

There is a marked decrease in fatalities per 100,000,000 driver

miles from December8.1955, to January, 1956. However, there are also
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decreases in fatalities/100,000,000 mi. in six of the eight possible

comparisons of a December with the immediately following January. In

fact, the drop in fatalities/100,000,000 miles from December, 1957,

to January, 1958, is almost equal to the drop from December, 1955, to

January, 1956. A natural drop from any December to the immediately

following January in fatalities/100,000,000 miles is quite apparent

in Figure 1. Such cycles are also obvious in the graphs of monthly

fatalities per 100,000,000 miles in the four "control" states.

The following tedhnique was employed to remove the cycles from

the data. Since the cydle had a period of twelve months, the average

fatalities/100,000,000 miles for each of the' nine Januaries (1951-

1959) was subtracted from each January observation. Similarly, obser-

vations on each of the other eleven months were deviated around the

average (over nine monthly values) fatalities/100,000,000 miles for

that month. This was done for each of the five states. (A constant,

2 or 3, was then added to these transformed scores to make them all

positive.)

These transformed data showed neither apparent cycles nor upward

or downward trends. The data appear in Figures 2-6. In this form,

the data appear to satisfy the first condition of the intdgrated

moving average model in equation (1). The next step in the examina-

tion of the fit of the integrated moving average model to the data

involves the correlograms of the transformed observations 'and the

differences between adjacent observations in the series.

Correlograms were calculated on the data in Figures 2-6 for pre-

January 1955 (n1=60) and post-January 1955 (124,48) data sdparately.
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(A marked change in level of a time-series due to a treatment effect

would alter the autocorrelations from What they would be in the fun-

damental process which generates the observations in the time-series;

hence, in judging the fit of a model to data from a time-series ex-

periment, correlograms must be calculated separately for pre- and

post-treatment Observations.) To conserve space, these correlograms

are not reproduced here. None of them showed the "damped sine curve"

characteristic of autoregressive series. Indeed, eadh correlogram

appeared to be no more than a random array of non-significant auto-

correlations characteristic of the correlogram to be expected from

data conforming to the integrated moving aveiage model.

The next step in the investigation of the fit of the model in

(1) to the data is to calculate the correlogram for the differences

between adjacent observations, zt -
zt-1.

It is necessary to calcu-

late these'differences separately for the pre-treatment and post-

treatment data. Only the correlograms for the 60 pre-treatment ob-

servations for each state are examined here. As was pointed out earl-

ier, if the model in (1) is satisfied, the lag 1 autocorrelatio.1 of

the differences z
t

z
t-1

will equal -(1 -Y)/[1 + (1 - Y)
2
], where

yis an unknown parameter in the model, and the lag 2 and greater

autocorrelations of the same data will equal zero. Not knowing y,

it is necessary to obtain an estimate of it. Later it will be seen

how the likelihood distribution of Y can be found from the N observa-

tions, zt, and the maximum likelihood estimate of y found therefrom.

The maximum likelihood estimates for eadh of the five states were

found to be the follawing:

-33-

,



State Maximum Likelihood
Estimate of Y

Corresponding Expected
Lag 1 Correlation of
zt

zt-1

Connecticut .01 -.50

Massachusetts .01 -.50

Rhode Island .01 -.50

New York .16 -.49

New Jersey .11 -.49

In light of the dbove data, the correlograms for the 59 observa-

tions of zt zt_l for each state should present a lag 1 correlation

of approximately -.5 and lag 2 and greater correlations whidh differ

insignificantly from zero. The first such correlogram--for the Conn-

ecticut data--appears in Figure 7. The jagged line in Figure 7 is

the plot of the lag 1 thru lag 30 autocorrelations for the 59 pre-

treatment observations z
t

- zt-1 for Connecticut. The lag 1 autocor-

relation of -.555 agrees quite closely with the expected value of

-.50. Superimposed upon the graph of the correlogram are two curved

lines indicating those points which lie two standard deviations from

the mean, zero, in the distribution of the lag k autocorrelation co-

efficient for samples of size 59 from a population in which the co-

efficient is zero (see Bartlett, 1946). Only the lag 1 autocorrela-

tion coefficient is significantly different from zero in Figure 7;

hence, the conditions of the model--as reflected in the correlogram of

zt-l"appear to be met by the Connecticut data.

The correlograms (lag 1 through lag 20) for Rhode Island, Massa-

dhusetts, New York, and New Jersey for the 59 pre-treatment
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observations z
t

- zt-1
appear in Figure 8. None of the lag 1 auto-

correlation coefficients differs appreciably from the expected values

of -.50 and -.49. The lag 2 and greater autocorrelations are distri-

buted around zero with only three coefficients (viz., lags 18 and 19

for Massachusetts and lag 4 for New Jersey) lying further than two

standard errors from zero. (me curved lines marking off two stan-

dard errors in the distribution of the autocorrelation coefficients

which appear in Figure 7 can be applied to the data in Figure 8 as

well.) The total import of the data in both Figures 7 and 8 is that

the conditions of the integrated moving average model in equation (1)

which are reflected in the correlograms of zt' -zt.1 are reasondbly

satisfied by the data for the five states.

After transformation of the data and removal of cycles, the data

on fatalities for the five states appear to satisfy all of the condi-

tions of the integrated moving average model in equation (1) reason-

ably well. We shall proceed with the analyses assuming the data are

adequately described by such a model.

Anal sis for Change in Level of the Five Time-Series

First, we shall consider in turn the individual analyses for

changes in level between the 60th and 61st months of the five time-

series in Figures 2-6. The analysis of the Connecticut data (Figure

2) will be considered in detail. Summaries of the analyses will be

presented for the other four states. After consideration of the in-

dividual analyses, the five sources of data will be combined into a

single analysis comparing Connecticut with the "control states."

-35-



As was pointed out earlier, the objective of the analysis of a possibl

change in level of a time-series of the integrated moving average type is

to obtain a least-squares estimate of 6 in (1) and a distributional state-

ment about the estimate. Provided y is known, this objective is relatively

easily attained. The least-squares estimate of,cs, namely 8, and an esti-

mate of its standard error, am, are given in Box and Tiao (1965) by for-

mulas (3.8) and (3.11), respectively. Under suitable assumptions of normal

ity and independence of errors, ( a-6 )/) has a t-distribution with ni

n2 - 2 degrees of freedom. A test of the hypothesis that 6 = 0 can be

carried out with the test statistic t =8/a(8).

However, if y is not known (as is generally true), it is necessary to

obtain information from the sample of N observations about probable values

for y. Either of two strategies might be followed: 1) find the maximum

likelihood estimate of Y and estimate a and 0 (8) using only that maximum

*. likelihood estimate; 2) plot both the likelihood distribution of y and the

A A A
value of t = 6/0(6) against the value of y as it ranges between 0 and 2 and

see if the t-statistic is clearly significant or non-significant over the

range of probdble valuesfbr y. Me likelihood distribution of y given the

N sample observations is found from formula (5.8) in Box and Tiao (1965).]

Both strategies will be .employed at different points in the analyses to fol

iow.*

A. Analysis for Change in Level of the Connecticut Data (Figure 2).

The ni = 60 observations preceding the crackdown on speeding in Connec

ticut and the n2 = 48 post-crackdown observations were subjected to the an-

alysis outlined in Box and Tiao (1965) for unknovm y. The likelihood

*Calculations performed on computer program described in Chapter II.
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distribution of y given the 108 observations is denoted by h(ylz) in

Figure 9. The area under the curve h(ylz) is one unit. The maximum like-

lihood estimate of y is seen to be 0. The curve denoted by t in Figure 9

is the value of 43/;(4)--read off the right ordinate in the figure--for

each value of y from 0 to 2.

As can be seen by inspection of the two curves in Figure 9 almost all

the mass of the likelihood distribution of y lies between 0 and 0.25, the

former being the maximum likelihood estimate and the latter being quite un-

likely; over this range (0 to 0.25) the value of the t-statistic for test-

ing the hypothesis that 6 = 0 (against H1: 6 < 0) ranges from -0.86 to

-2.05 (from nonsignificance at the .15 level to significance at the .05

,level). Note also that t is significant at the .05 level with a one-tailed

test only for y dbove .12. If y is set equal to its maximum likelihood

estimate, namely 0, t is nonsignificant even at the .15 level. Inspection

of the graphs is facilitated by the dotted lines which mark off the values

of t (df = 106) required for significance at the .01, .05, .10 and .15

levels for a one-tailed test of the hypothesis that 6 = 0. (For the four

control states the alternative hypothesis is that 6 > 0.) -

The analysis reported in Figure 9 will support neither a confident

acceptance nor rejection of H: 6 = 0. The analysis proved sensitive to

the unknown value of y . H: 6 = 0 can be rejected at the .20 level of

significance; but a more cautious decision rule, say a = .01, would

not lead to rejection of H: 6 = 0 for any likely value of Y.
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conservative hypothesis tester would probably view, the data as provi-

ding nor support for the rejection of H: 6 = 0.

B. Analysis for Change in Level of the Massachusetts, Rhode Island,

New York, and New Jersey Data.

In Figure 10, the likelihood distributions and t-statistics for

testing H: 6 = 0 are presented for the four "control" states. In all

analyses, the likely values of the unknown parameter Y fall below .30.

The maximum likelihood estimates of Y are .01 for both Massachusetts

and Rhode Island. For New York and New Jersey, the maximum likelihood

estimates of y are .16 and .11, respectively.

Considering only the value of t for the maximum likelihood esti-

mates of y, the Massachusetts data yield the only value ofa Which

differs significantly (L3 < .01) from zero. The t-statistics for

Rhode Island, New York, and New Jersey do not attain statistical sig-

nificance at the .15 level with a directional statistical test.

Considering the value of t over the ranges of likely values of I,

neither the Rhode Island, New York, nor New Jersey data present any

evidence for a value of S significantly different from zero. The re-

sults for the Massadhusetts data are equivocal. At the maximum like-

lihood estimate of ye t is significant at the .01 level. At the

point on the Y-scale above which approximately half of the area under

h( ylz) lies, t is significant with an a between .C1 and .05 with a

one-tailed test or .02 and .10 with a two-tailed test. The value of

t drops below significance at the .10 level for a one-tailed test

(or .20 for a two-tailed test) dbove the point on the y-scale dbove

which lies approximately 25%; of the area under h(Ylz).
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None of the analyses of the four control states yields compelling

evidence of any abrupt change in fatality rate associated with the

events in that state immediately prior to January, 1966. The evi-

dence ranges from definitely not supporting the presence of abrupt

change in the case of Rhode Island to slightly equivocal as evidence

for an abrupt change in the case of Massachusetts. An alternat4ve

analysis exists of the multiple-group time-series experiment in whidh

Connecticut is compared with the four "control" states. The differ-

ence between fatalities/100,000,000 miles for Connecticut minus the

average fatalities/100,000,000 miles for Massachusetts, Rhode Island,

New York, and New Jersey embodies an "experimental and control" com-

parison. These 108 differences'have been calculated and graphed in

Figure 11.

One might expect that the analysis of the differences between

experimental and control time-series would be somewhat less sensitive

than the analysis employed dbove in which the 6's are estimated separ-

ately for each series and then combined in planned or post-hoc com-

parisons. The process of taking difference compounds residual varia-

bility and thereby reduces power. The analysis of the data in Figure

11 bears out this expectation.

The maximum likelihood estimate of y for the data in Figure 11

is .07 (see Figure 13). Thus one would expect a lag 1 autocorrelation

for the differences z
t

- z
t-1 to equal -.50 and the lag 2 and greater

autocorrelations to be essentially zero. These conditions are reason-

ably well met, as can be seen by inspecting the correlogram in Figure

12.
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In Figure 131 the likelihood distribution of Y for the 108 obser-

vations and the t-statistic for testing the hypothesis that 6 0 are

presented for values of y between 0 and 2. It is apparent from in-

spection of the two graphs that a is not significantly different from

zero over the entire range of likely values for y.

In summary, the five individual analyses gave no convincing evi-

dence for an dbrupt change in level associated with the Connecticut

speeding crackdown for any of the time-series. The analysis of the

differences between the monthly observations for Connecticut minus

the average for the four control states showed no ev°,dence of a treat-

ment effect in Connecticut. In the following section, a more powerful

analysis of the data is reported.

The Analysis of a Planned Comparison of Connecticut with the Control

States.

If the time-series for each state can be regarded as independent

of the others, well-known inferential statistical techniques can be

employed in making comparisons between Connecticut and the four con-

trol states. Accordingly evidence was sought concerning the degree

of dependence among the time-series for the different states,

Given the normality assumption of the model in (1) and (2)1 the

independence of the various time-series can be demonstrated if the

series show no intercorrelation. To reduce the burden of data analy-

sis without a serious reduction in the sensitivity of the test of the

hypothesis of no intercorrelation, data for the first 50 months for

Connecticut, Massachusetts, and New York were used. Using "months"

as the unit across Which correlations were computed, the three
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intercorrelations of these states were computed for the variable "fa-

talities/100,000,000 miles minus monthly average." The intercorrela-

tion matrix was as follows:

Conn. N.Y. Mass.

1 -.105 -.061

-.105 1 -.207
(n = 50)

-.061 -.207 1

A test was made of the hypothesis that the 50 triplets of obser-

vations were a random sample from a tri-variate normal distribution

in which all intercorrelations are zero (Bartlett, 1950). The test

statistic, -((n - 1) - (2m + 5)/6] loge1111, is approximately distri-

buted as a chi-square varidble with m(m - 1)/2 degrees of freedom,

where m is the number of varidbles. The value of the test statistic

for the data in question was 2.877, a value exceeded with probability

greater than .30 by a chi-square varidble with three degrees of free-

dom. The three series can probably safely be regarded as independent.

(As a general procedure, when Y may depart apprecidbly from 0, it

would be better to intercorrelate the estimated residual errors, the

a's, using the maximum likelihood estimates of Y for each series.)

A single planned comparison will serve to evaluate the signifi-

cance of the change in level of the time-series for Connecticut as

compared to the changes or lack thereof in the four control states.

This comparison has the following form:

* = 6 - (6 + 6 + 6 + 6 )

M RI NY NJ

The value of *is estimated by replacing the parameters with their

least-squares estimates;, the variance of the comparison is estimated

-41-
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from the common residual variance for the five states multiplied by

[1
2

+ 4(1/4)
2
]. The estimated value of divided by the square root

of an estimate of its variance follows Student's t-distribution with

5(106)df When 0 = 0. (See Hays, 1963, Chp. 14). However, since the

estimated change of level effects and residual variances differ for

different values of y we shall estimate and test the significance of

the comparison for the maximum likelihood estimates of y for each

state and for reasondble upper and lowerlimits to the value of y for

eadh state.

The hypothesis to be tested is that 0 = 0 against the alternative

hypothesis that 0 < 0. In words, the hypothesis to be tested is that

the change in level of the Connecticut series is no different from

the average "change" for the four control states against the alterna-

tive that it is less.

Because the y 's are unknown, we shall specify a range between

uhidh each y probably lies as well as the maximum likelihood estimate

of each y. The lower limit to the range for each state will be that

value of y below which approximately 25% of the area under the like-

lihood distribution of y lies; the upper limit will Mark off approx-

imately the upper 25/ of the likelihood distribution. The data for

estimating and testing the comparisons appear in Table 1.



Table 1

Values of a and ;.(a) for the Maximum Likelihood Estimate and

Reasonable Upper and Lower Limits of y for All Five States

State

1. Conn. §
06)

.2. Mass.
a(8)

3. R. I. 8
a(8)

Y
4. N. Y. a

a(8)

5. N. J.
.(6)

Max. Likeli.
Estimate of y

Reasonable Upper
Limit for y

Reasonable Lower
Limit for y

.01

-.152
.176

.10

-.594
.391

.01

-.152
.176

.01 .15 .01

.472 .259 .472

.126 .341 .126

.01 .1U .01

.079 .326 .079

.276 .617 .276

.10 .25 .10

.275 .247 .337

.289 .375 .233

.11 .20 .07

.198 .093 .331

.292 .391 .236

Table 2

Results of Planned Comparisons of.8 for Connecticut
with the Average 6

for Massachusetts, Rhode Island, New York, and New Jersey

11,

a-

t =

Prob {t530<t}

4.10

Max. Likeli.
Estimate of y

Reasonable Upper
Limit for y

Reasonable
LoWer Limit for y

-.408 -825 -.457

.269 .484 .241

-1.517 -1.705 -1.896

.065 .045 .030
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For a given set of five values of y (one for each state,* is

estimated by subtracting the average a for Massachusetts, Rhode Island,

New York, and New Jersey from the value of a for Connecticut. The

residual variance, assumed to be equal for all five states, is esti-

mated from the average of the residual variances for all states. The

values of t11,451$ and t which correspond to the maximum likelihood es-

timates of and reasonable upper and lower limits to Y are reported in

Table 2. The bottom row of Table 2 is the probability of a Student

t-variable falling below the value of 11)/13. (The probabilities in

the last row of Table 2 can be interpreted as the smallest levels of

significance for which the planned comparison is significantly differ-

ent from zero with a one-sided test.)

Conclusion

It can be seen in Table 2 that one may conclude that there is a

statistically significant reduction associated with the speeding

crackdown in fatalities/100,000,000 driver miles for Connecticut as

compared with the four control states.

The above conclusion must not be accepted without due considera-

tion of a source of potential invalidity in the experiment. As Ross

and Campbell (1965) pointed out, the fact that Governor Ribicoff was

prompted to take action in late 1955 by the alarmingly high fatality

rate for that period introduces the possibility of-a regression effect

from the observations immediately preceding his actions to the obser-

vations immediately fdlowing. ,If one observes a time-series for a

period of time and selects that Observation Which appears quite extreme,
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subsequent observations are likely to be relatively less

extreme. The exact extent of any regression effect in the

Connecticut time-series experiment is difficult to estimate.
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Figure 7. Correlogram of Differences for Pre-Treatment (n
1
=60)

Monthly Fatalities/100,000,000 MIdes Minus Monthly Average Plus 2

for Contlecticut.

-54-



0-
1

r 2 .1 0

..

10
10

1)
12

r7
)1

.1
)

F
i
g
u
r
e
 
8
.

C
o
r
r
e
l
o
g
r
a
m
s
 
(
L
a
g
 
I

-
 
L
a
g
 
2
0
 
A
u
t
o
c
o
r
r
e
l
a
t
i
o
n
s
)
 
o
f
 
D
i
f
f
e
r
e
n
c
e
s
,

z
t

z
t
-
1
,

f
o
r
 
P
r
e
-
t
r
e
a
t
m
e
n
t

D
a
t
a
 
(
n
1
=
6
0
)
 
f
o
r
 
M
a
s
s
.
,
 
R
.
I
.
,

N
.
J
.
,
 
N
.
Y
.

(
S
e
e
 
F
i
g
u
r
e
s
 
3
-
6
 
f
o
r
 
t
h
e
d
a
t
a
 
w
h
i
c
h
 
a
r
e
 
"
d
i
f
f
e
r
e
n
c
e
d
"

a
n
d
 
c
o
r
r
e
l
a
t
e
d
.
)



F
i
g
u
r
e
 
B
.

(
c
o
n
t
.
)



1

(.
9

14 10 9

h

1.
P

M
* 

C
M

.. 
III

M
11

11
0 

O
lin

e.
.P

.1
11

4.
1.

1
.1

11
.0

. 4
1.

00
11

11
1.

11
..1

 1
11

17
16

 N
r4

. 1
1 

01
...

 a
IA

N
."

 1
11

.1
k1

r.
 1

11
.0

11
1.

7
M

IN
N

.
S

O
M

. 0
1.

11
11

..1
1.

11
.

w
lM

r
01

,1
:0

 O
ff 

W
N

W
 IM

IO
IM

 .1
r

O
w

ne
r 

W
e.

ev
e

C
O

.
.R

re

3 2

57
.7

0
O

W
.=

 W
O

V
M

. I
M

O
M

R
 e

lM
m

e
11

.0
 .

M
m

al
l

af
t

M
U

M
S

 li
.r

/

11
11

=
. 0

4 
ili

m
oo

m
 O

w
n=

 a
re

as
/M

..

7-
1D

/O
R

;)

.
.
0

1.
0

c 
z

.

O
r.

1

ex
.*

 g
o,

.
41

[1
-.

7.
i

a:

( 
c

F
i
g
u
r
e
 
9
.

h
(
y
l
z
)
 
a
n
d
 
t
 
f
o
r

C
o
n
n
e
c
t
i
c
u
t

F
a
t
a
l
i
t
i
e
s
/
l
0
0
,
0
0
0
,
0
0
0
 
D
r
i
v
e
r

M
i
l
e
s

M
i
n
u
s
 
M
o
n
t
h
l
y
.
A
v
e
r
a
g
e
 
P
l
u
s
 
2
.

(
n
1
=
6
0
,
 
n
2
=
4
8
)



4 2

G
IN

E
M

 O
IS

I
sO

 1
1 

10
. *

S
S

, I
S

P
O

N
 1

1.
10

.1
- 

11
10

.1
11

1.
 0

11
01

11
11

11
A

IM
O

M
O

 -
11

11
1M

-I

\\\
',1

4.
11

01
. .

10
0

IIM
P

III
.S

.1
.1

-1
1.

=
0.

11
1

S
O

S
 IM

M
O

 IP
IIN

D
 M

M
.

IF
IM

M
T

, O
a.

 0
11

, M
.I.

6 
It

t_
.1

0
.2

0(
c 

0
.1

0

.0
11

6
1,

41
0*

-7
t,

.1
1M

IC
,IV

./6
-,

 to
IS

S
N

aa
,

)

10
1.

.. 
Z

 0
.1

00
 4

1/
/e

fe
a 

M
O

R
N

. 0
0

-R
A

N
de

sK
so

ss
ri

f _
aw

-a
. 1

,1
,..

"1
..

1 s
j;/

,
-

_

11
/4

...
.

- 
01

11
,. 

O
W

,. 
O

.S
/ e

ta
-.

IF
4 

-;
,-

...
.0

 M
aa

aa
V

 -
1,

1 
el

...
.. 

I.
.. 

W
S 

A
D

 a
, 1

11
. .

...
 ,

7 
O

PS
I1

 I
t

.,.
. 0

.1
.0

1 
C

r,
I.

T
b>

 4
,-

.. 
-7

:3
11

,..
. r

 .1
4 

4 
- 

, S
t,

' ,
;

IN
1 

k

i
)

C
,

i '
'''

C
.. 

' "
 -

 ''
.

'.

N

t

41
,

cr
. 1

V
 k

 4
'1

6
N

.e
r

[i
d

O
C

I:
'

-

0
.

r
itt

 :4
--

(

F
i
g
u
r
e
 
1
0
.

h
(
y
l
z
)
 
a
n
d

t
 
f
o
r
 
F
a
t
a
l
i
t
i
e
s
/
1
0
0
,
0
0
0
,
0
0
0

D
r
i
v
e
r
 
M
i
l
e
s
 
M
i
n
u
s
 
M
o
n
t
h
l
y

A
v
e
r
r
I
g
e

P
l
u
s
 
a
 
C
o
n
s
t
a
n
t
 
f
o
r
 
M
a
s
s
a
c
h
u
s
e
t
t
s
,

R
h
o
d
e
 
I
s
l
a
n
d
,
 
N
e
w
 
Y
o
r
k
,
 
a
n
d

N
e
w
 
J
e
r
s
e
y
.

(
n
1
=
6
0
,
 
n
2
=
4
8
)



1

t
r
i 0

.

L
.
_

20
30

40
50

 5
5

5
10

20
1:

 3
M

O
N

T
H

F
i
g
u
r
e
 
U
.
 
T
i
m
e
-
S
e
r
i
e
s

o
f
 
D
i
f
f
e
r
e
n
c
e
 
B
e
t
w
e
e
n

C
o
n
n
e
c
t
i
c
u
t
 
a
n
d
 
t
h
e

A
v
e
r
a
g
e
 
f
o
r
 
N
.
Y
.
-
N
.
J
.
-
M
a
s
s
.
-
R
.
I
.

o
f
 
F
a
t
a
l
i
t
i
e
s
 
P
e
r
 
1
0
0
,
0
0
0
,
0
0
0

D
r
i
v
e
r
 
N
i
l
e
s
 
b
y
 
M
o
n
t
h
 
(
n
1
=
6
0
,
 
n
2
=
4
8
)
.



"

ci .10
Pr) L")

-60-



F
i
g
u
r
e
 
1
3
.

h
(
Y
6
)

p
e
r
 
O
n
e
 
H
u
n
d
r
e
d

p
e
r
 
O
n
e
 
H
u
n
d
r
e
d
 
M
i
l
l
i
o
n

J

.

a
n
d
 
t
f
o
r
 
D
i
f
f
e
r
e
n
c
e
 
B
e
t
w
e
e
n
 
C
o
n
n
e
c
t
i
c
u
t
 
F
a
t
a
l
i
t
i
e
s

M
i
l
l
i
o
n
 
M
i
l
e
s
 
a
n
d
 
t
h
e
A
v
o
r
a
9
e
 
o
f
 
t
h
e
 
F
a
t
a
l
i
t
i
e
s

M
i
l
e
s
 
f
o
r
 
t
h
e
 
S
t
a
t
e
s
 
o
f

N
.Y

.,
N
.
J
.
,
 
R
.
I
.
,
 
M
a
s
s
.
 
b
y
 
n
o
n
t
h
s
.

H
 (

V
D

0
05

10
15

-
20

.3
0

.3
5

*m
e.

an
at

1.
0 r .J



-

on to c.1 2: C

as a T-Si .

0. Introduction.

In 1959 0 Wolf, L-c.e and Fax 'cL(c.lblishec: Schaune!
.1

.awaINNIMIONOMI

(Divorce anca 73ivorce L!aw). This work dealt with the effects of revision

of German divorce laws in 1900 on thc rates of divorce and petition for

divorce. 1",1:einstein (1959) reviewed their careful study and evaluated

their conclusions. The present pal?er is a-re-analysis or Wolf, flike

and Hax's data with newly develo,?ed inferential scatisc.ical models and

a reapprasal in light of a2propriate statistical analyses of the con-

clusions drawn in both of the above works.

1 The Lecislation.

Cn January 1, 1900, the new Civil Code of the Ger:aan Empire re-

placed the various legal statutes then in effect.* The Civil Code

*The re=inder of this section draws heavily upon Scheidunq und
Schencis:rec7-± by Wolf, Liike, and Eax (1959) and "Divorce and the

Law in Germany: A Review" by 1theinstein (1960).



If the trend of the pre-T Observations is altered sharply by the

introduction of T, we are inclined to attribute the alteration (whether

it be a change in level, change in direction of drift, etc.) to T. A

particularly important problem is to determine whether the activity of

the time-series in the neighborhood of T indicates a genuine effect of

T or whether it is merely an o:derly continuation of an undistux'bed

time-series. We judge the prdblem to be "particularly important" be-

cause the inferential statistical intuitions of social scientists seem

seldom to have been developed on non-independent observations (as are

in evidence in most time-series), thus formal statistical significance

tests are a necessary overseer of "considered impressions" we might

form of the data.

The divorce rate (divorce/l00,000 persons) for the German Empire

from 1881 through 1914 is plotted in Figure 1. In Figure 2 appears

the rate of petitioning for reconciliation proceedings for all of Ger-

many from 1881 through 1913. Both indexes are plotted in Figure 3 for

those states under the Prussian Code prior to 1900; the same data ap-

pear in Figures 4 and 5 for the states under the common iaw and Code

Napoleon prior to 1900, respectively.

3. Statistical Analytic Tedhnictues.

Finding an appropriate inferential statistical analysis of data

from a time-series experiment has been repeatedly recognized as an im-

portant prOblem (Campbell, 1963; Campbell and Stanley, 1963). The data

in Figure 1 offer an excellent illustration of the need to perform a

valid inferential statistical analysis in which the probabilities of

-63-



1914.

ital accord.

:=Joysin&:: vlidity as a measure of mar-

One x't"I fith 4r th ailitv of ma-ital partners to

repair C4i
Itl- .t.C.444"4""*" " " -"Nd.k.S:UpteZ.1

as most significant. rlo them, th revntion or . ..kus at all,

, -oetition for` ACOSZS is a woit:x7 co-,

reconciliation (which in reality is t.-.e ini tiation of divorce -proceed-
.

ings) as a more valid measure of ' '11accorc,- -A7 wou_a arcue that,

marital accord is the more signif4cant variable to attempt to measure

since any country can reduce its (..A7Lie rate Lo zero by making divorce

illegal (as witness, Italy) without materially affecting the stability

of the home. This is not the pa.ce to evaluate the social and human

value of legal vs. illegal divorce, although it is entirely within the

means of the present-day social sciences to do so. Eence, analyses of

both indexes will be performed here.

The period from 1881 through 1914 a*..-.d the intervening revision of

the divorce laws can be regarded as an interrupted time-series quasi-

experiment (Campbell and Stanley, 1963) for the purpose o,17. assessing

the effects of the legislative cLange. Diagrammatically, the design

of the quasi-experiment is as follows:

0 0 0
11 2' " T On

-1 1
, On

-I 1-2

where 03 represents the jth successive Observation of the divorce
--

rate, say, and

T represents the "treatment" -- in this case, the revision of the

divorce laws.



Protestant marriage. German common law was in effect in 12 states

prior to 1900.

Similar in practice to the German common law was the Code Napoleon,

which was in effect in approximately four states. Divorce was granted

only in cases of guilty misconduct; disruption of a marriage consti-

tuted insufficient grounds for divorce. (livorce by mutual agreement

was a legal possibility but rarely occurred in practice due to burden-

some legal procedures.)

Under the new Civil Code instigated in January of 1900, divorce

was to be granted solely on the grounds of guilty misconduct by one

partner (adultery, desertion, extreme cruelty, etc.). Divorce by

mutual agreement was dbolidhed. The "enlightened disruptive princi-

ple" of the Prussian Code was totally displaced by the "guilt princi-

ple" in the new Civil Code. Divorce became far more difficult for

those who formerly lived under the Prussian Code; it became generally

easier to obtain for those formerly under the common law (divorce was

legally available to Catholics in ex-common law states for the first

time).

2. The Data and the Design.

Two sets of data are available which bear on the question of What

effects if any the revision of the divorce laws had: decrees of di-

vorce per 100,000 population (the divorce rate), and petitigns for ini-

tiation of reconc3liation proceedings per 100,000 population (which

were mandatory under German law both before and after 1900). These

data were reported by Wolf, Lae, and Hax (1959) for the period 1681-
-65-
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brought about a general "tightening 1;2" of divorce laws. The Civil
Code divorce laws had been drafted in a s9irit of hostility toward

divorce and with the intntion of revc:rsing the steadily increasing

divorce rate. (Divorce per 1000000 inhabitants in Germany rose from
8.7 in 1881 to 17.0 in 1399.) tl-le new law, divorce was to be

granted only in the case of guilty misconduct; divorce was not to be

allowed in cases where there was mutual agreement that the marriage

should be dissolved or where circumstances had thoroughly disrupted
the marriage.

The new Civil Code was uniform across the German states, whereas
divorce laws in effect in the various states prior to 1900 were of
three general types. The possible effects of the new Civil Code could

have depended upon the particular divorce laws in effect before 1900;
thus it will be advisdble to analyze the effect of the new Civil Code
on the divorce rate for three groups of states -- corresponding to
the three types of pre-1900 legislation as well as for the German
Empire as a whole.

w.

Approximately eight states were under the divorce laws of the
Prussian General Code prior to 1900. The Prussian Code was the most
lenient as regards divorce. Divorces were granted in cases of mis-

conduct, mutual agreement, and even upon grounds of "insuperable aver-
sion of one party for the other. The Prussian Code recognized "dis-

ruption" of the marriage beyond repair as grounds for divorce.

In contrast to the lenient Prussian Code, the German "common law"
embodied ecclesiastical law concerning divorce. Catholics could not
divorce, and only grave misconduct was grounds for dissolution of a
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incorrect decisions can be known xactly and controlled. The data in

Figure 1 appear to show the expected drop immediately after the change

of legislation in 1900.* In fact, the movement of the divorce rate

index is larger between 1899 and 1900 than between any other pair of

years. However, the 3 point drop between 1899 and 1900 is only 0.2

larger than the 2.8 rise between 1881 and 1882. It would seem in-

cautious, then,,to attempt td1 draw any conclusions by mere inspection

of the data or by the application of intuitive judgment.

WO1f, LUke, and Hax (1959) considered analyzing the data in Fig-

ures 1 through 5 by fitting least-squares re.gression lines (dependent

variable-divorce rate; independent variable-year) to the pre-treatment

and post-treatment data separately and testing "whether the two lines

connect" or whether the datum for 1900 appears to be a simple extra-

polation of the pre-treatment regression line. Their suggestion is

equivalent to the "Mood-test" suggested by Campbell and Stanley (1963,

p. 213). Wolf, LUke, and Hax recognized the shortcomings of their

suggestion and refrained from any inferential statistical_analysis.

They stated their concerns about statistical procedures for analyzing

their data as follows**:

*There are 18 observations for the 19 years from 1881 to 1899. Divorce
data were not available for the entire German Empire in 1892 and 1893.
The observation graphed half-way between 1892 and 1893 is an estimate
determined in Wolf, Mike, and Hax (1959).

*#The following passage was rather freely rendered from the original
German, but it is stibstantially correct.
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"If the post-treatment regression line connects directly with
the pre-treatment regression line, then the change of laws has not
brought dbout a ghift of level. If, however, it lies higher or
lower, the possibility exists that we are dealing with an effect .

of the new laws . .

"Where in fact a material shift can be estdblished, it is a
question of ascertaining whethez this ghift is to be ascribed to
the influence of the change of laws. This can only be accepted
when the data show that the ghift of level occurred exactly be-
tween 1899 and 1900.

"One could suppose that the data are randomly distributed
around the regression line. The ghift in level between 1899 and
1900 could be regarded as significant under this assumption if
the datum for 1899 lay within the chance region surrounding the
pre-treatment regression line but the datum for 1900 fell outside
this chance region. One could run the alternative test and estab-
lish Whether the datum for 1900 lies within the chance region of
the post-treatment regression line and the datum for 1Pq9 lies
outside of the dhance region around this regression line.

"If one were to proceed in this way, then one would have to
make use of the standard daviation, a, in ascertaining the limits
of the chance region. The standard deviation of a series of
values is given by the quadratic mean of all deviations of the
individual values from the arithmetic mean. In the case of a
regression line, the deviations of the data from the correspond-
ing predicted value take the place of the deviations from the
arithmetic mean. If there exist reasons for assuming that the
data are distributed as a Gaussian (normal) distribution, then
the probabilities would amount to .6827, .9545, and .9973 that
a value deviates less than one, two and three standard deviations,
respectively, from the mean. For a deviation of a value from the
mean of more than three standard deviations it could be assumed
rather safely that a special influence instead of a dhance fluc-
tuation is being exhibited. The same conclusion would no doubt
-be clear if the deviation were merely two standard deviations
from the regression line.

"It can not be assumed, however, that the process is repre-
sentative of the present case. Can it be assumed that tlie fluc-
tuations of the nuMber of divorces are the result of a neutral
and unchanging law of a random distribution? Is the number of
divorces described as the result of a series of mathematically
isolatable factors? Is the chance region into Niiihidh this number
must fall unequivocally determined when these factors remain con-
stant? The answers to these questions have been given in part
previously. Pee page 12 in Wolf, Luke, and Hax (1959).] There
exists little inducement to assume that the data are distributed
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around the regression line according to a constant mathematical
distribution law let alone according to the law for the Gaussian
normal distribution. Hence, the calculation of chance regions
in this connection appears to be senseless."

(Wolf, Liike, and Hax, 1959, pp. 129-132.)

Wolf, Llike, and Hax seem overly concerned dbout the validity of

the assumption of a normal distribution. And in fact, in the passage

quoted and on page 12 of their book they express reservations dbout

the validity of any stochastic model as a representation of a social

system. They appear to argue that "chance" is an inadequate explana-

tion of social phenomena for which we can find explanations, and they

appear to draw some gratuitous connection between the normal distribu-

tion and chance phenomena. We can with go6d stccess predict and "ex-

plain" human stature; the fact that height tends to be normally dis-

tributed in adults does not mean that stature is the result of unknown,

chance influences.

A valid inferential statistical analysis is availdble for time-

series experiment data, but it is more difficult than fitting and

extrapolating least-squares regression lines.

In 1965, Box and Tiao developed a method of evaluating the change

in level between two successive points in time of a non-stationary time-

series. Observations zt are taken at equally spaced time intervals and

one wishes to make inferences about a possible shift in level of the

time-series associated with the occurrence of an event at a particular

point in time. If there is an dbrupt dhift in the level of a time -

series between the third and fourth Observations, evidence of a treat-

ment effect may exist.
- 69-
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The statistical model underlying the Box-Tiao analysis of change

in level of a time-series was the integrated moving average model.

z wiLa and zt=L+y E a +a1 1 t-1 t

for the n dbservations prior to Ile introduction of T, and

t-1

i=1

for the nis2 = - ni observations following T, where:

z
t

is the value of the variable observed at time t,

L is a fixed but unknown location parameter,

y is a parameter descriptive of the degree of interdependence

of the observations in the time-series and takes values

0 < y < 2,

at is a random normal deviate with mean 0 and variance a2

,is the change in level of the time-series caused b T.

Essentially the model implies that the system is subjected to

periodic'random dhodks, at, (with zero mean) a proportion (y) of which

are absorbed into the level of the series. Data which conform to the

model in (1) and (2) are such that the graph of the time-series follows

an erratic, somewhat random path with slight, but no systematic drifts,

trends, or cycles. Data whidh show a systematic increase or decrease

over time -- such as population and various growth curves -- violate

the assumption of zero mean for the random variable a . For generality,

the random variable portion of the model can 1-e allowed to assume an

expected value other than zero; thus "drifting" time-series -- those

showing a constant rise or fall over time -- can be accommodated. The
-70-
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generalization of the model in (1) and (2) is called the "integrated

moving average model with deterministic drift"* and takes the following

form:
t-1

+ 131 and zt L + y Z +t-i t
for the n observations prior to the introduction of T, and1

t-1
zt = L + 6 + y E + (4)0t1

i=1

for the n = N n observations following T,

where L, y and 6 are interpreted as in the model in (1) and (2),

but now 0 is a normal variable with variance a2 and mean equal

The parameter p describes the rate of ascent or descent of the

time-series.

It is illuminating to express 0 as p+ a and manipulate (3)

into a form similar to (1):

t-1
zt = L + py(t-1) + p + y E at-1 + cc

t (5)
i=1

One sees by inspection of (5) that the time-series in (3) will be

expected to have "drifted" uyt units at time t.

In the setting of the time-series quasi-experiment, interest cen-

ters on estimating 6 in (4) and testing its significance. The

*The "integrated moving average model with deterministic drift" was pre-
sented by G.E.P. Box and G.M. Jenkins on pp. 33-34 of "Models for Pre-
diction and Control, III.. Linear Non-stationary Models," Technical
Report No. 79. Madison: Dept. of Statistics, University of Wisconsin,
July, 1966.
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following steps lead to the least-squares estimate of 6 and its distii-

bution.
t-2

By setting y
1
= z

1
1, and yt = zt - y E (1-1)j z

t-l-j'
the model

i=0

can be written as Y = X 0 + e where X is defined as an N x 3 matrix of

weights as follows:

{

1 1 1

m 1 (1 - y

0 0

1

o'4, y)nra y)nl y)14'4.

0 I 3. (3. - y) . . . (1 - 1)n21 .

0 is a 3 x 1 vector such that 0
T
= (p, L, 6); and e is an E.

of random normal deviates, e
T

= ( the elements

x 1 vector

of which

have mean p and variance a2.

When y is known, simple least-squares estimates of p, L. and 6 can

be found from the familiar solution to the least-squares normal equations:

(XTX).-1 XFY (6)

The least-squares estimates in (6) each have a t-distribution with

N - 3 df when divided by appropriate estimates of their standard error.

In particular,

- )1) (fi; 4:1-171 ) 0%0 tN...3, (7)

(8)

(9)

(t ,),(sciii)... and

(a t.N.3, where

S2 III OrtY ()Yuma--3) and di is the jth diagonal element of (XTX)-i.
MEM

The above results follow from the linear modelY=X0+ein which

the errors, e, are assumed to be normal, homoscedastic, and independent.
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The quantity s2 is the residual variance, i.e., the variance of y

after the model X O. is fitted to it.

All of the dbove operations on the linear model are made for a

given value of y . When y is unknown (as will generally be true) a

Bayesian analysis using sample information about y is used in making

inferences dbout 6. The posterior distribution, h(Y1 z), of Y given

a set of N observations and assuming a uniform prior distribution is

known to within a constant of proportionality. The posterior distri-

bution of y assuming a uniform prior (in which case the posterior

distribution is equivalent to the likelihood distribution of y ) is

given to within a constant of proportionality by the following formula:

h(Ylz) IxT10-1/2 .(N.3)

Illustrations of how the posterior distribution of y in (11) is

considered jointly with i in making inferences about 6 for the simple

integrating moving average model in (1) appear in Box and Tiao (1965)

and Maguire and Glass (1967).

4. Data Analysis and Results. The data in Figure 1 were subjected to

the analysis outlined in Section 3* In Figure 6 appear graphs of the

*One condition which data following the model in (4) must satisfy is
stated in terms of the correlogram of the differences between succes-
sive observations, i.e., ztil-zt. The lag 1 autocorrelation coeffi-
cient should approximate -(1-1y)/(1-1-(1-.02]

, and lag 2 and greater
autocorrelation coefficients of zt4.1-zt should approximate zero for
the 18 pre-treatment observations, the lag 1 autocorrelation of the
17 differences z

t+1-z t was 0.127, Which corresponds reasondbly closely
to the expected value -- calculated from the maximum likelihood esti-
mate of y - of 0.100. The lag 2 through lag 9 autocorrelations were
.027, .033, -.419, -.013, .003, -.434, -.504 and .155, respectively.
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likelihood distribution of y and the t-statistic in .(7) for testing

the significance of the deviation of 8 from a hypothesized value of 0.

Nearly all of the mass of the likelihood distribution of y is contained

between the values 0.50 and 1.90.. The maximum likelihood estimate of

the unknown y is approximately 1.13. The value of t= #6'/;(6) is

clearly significant -- it is never greater than -4.50 -- over the

entire range of likely values of y. The hypothesis Ho: 6 = 0 can be

confidently rejected in favor of the alternative that 6 < 0. Thus we

see that the downward Shift of the rising divorce rate after 1900 was

quite statistically significant; chance can safely be discounted as

the explanation of the downward movement of the time-series after 1900.

Inspection of Figure 1 seems to indicate that the effect of revision of

the divorce laws was temporary. The conclusion that the effect of the

change in legislation was temporary depends upon the perhaps gratuitous

assumption that the trend from 1881 to 1913 would have been linear (as

opposed to curvilinear) in the dbsence of legislative change.

The results of the analysis of the data in Figure 2 appear as

Figure 7. The dotted lines on Figure 7 indicate the values below

WhiCh t must fall to allow rejection of 6= 0 in favor of 6 < 0 at the

.05, .025 and .005 levels of significance. The graphs of h( yjz) and t

present a picture of someWhat marginal statistical significance. The

value of t is significant at the .05 level and beyond for y above 1.09.

The fact that approximately 80% of the likelihood distribution of y

exceeds 1.09 lends support to rejection of 6 = 0 in favor of 6 < 0

at a respectable level of significance.

The analysis in Figure 7 of the petitiOn for reconciliation rate

data in Figure 2 is particularly interesting in that visual inspection
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of the time-series leaves an impression of no treatment effect which

is at variance with the results of the statistical analysis. Wolf,

Mike, and Hax (1959) and gheinstein (1959) concluded that the revision

of the divorce laws in 1900 had no effect on the rate of petition for

reconciliation. It is difficult to interpret whether these authors

are using the terms "no effect" to mean "no statistically significant

effect," "no socially significant effect," or "no permanent effect."

In the first sense, one could reasonably take issue with the conclusion

of "no treatment effect." It is not our purpose to argue the validity

of conclusions of "no effect" in the second and third senses.

In Figure 8 are presented the analyses for change in level of the

divorce rate and the petition for reconciliation rate for the German

states grouped by type of legislation prior to 1900. These analyses

will be summarized below for the three groups of states in turn.

The average divorce rate and petition for reconciliation rate for

12 Prussian Code states are graphed in Figure 3. The graphs of the

data create a distinct impression of a strong effect due to the revision

of legislation in 1900. The analyses graphed in the left-portion of

Figure.8 substantiate the statistical significance of the observed down-

ward shifts in the divorce rate and the petition for reconciliation rate.

For the divorce rate, the value of t = Sici(o) is never greater than

-3.90; t is approximately -4 at the maximum likelihood estimate of y .

It can be confidently concluded that the divorce rate shifted its level

downward at 1900. The petition for reconciliation rate.also showed a

significant downward shift at 1900; t was less than -3 for all likely

values of y, as can be.seen in the upper-left portion of Figure 8.
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As uas pointed out earlier, the new Civil Code instigated in 1900 con-

stituted a "tightening" of divorce laws in those states praviously

under the Prussian Code. Introduction of the new legislation dhould

have worked a negative effect upon the divorce and petition for recon-

ciliation rates. Such effects are reliably observable in the data.

The average divorce and petition for reconciliation rates for

eight Common Law states are graphed in Figure 4. Inspection of the

behavior of bcth time-series in the vicinity of 1900 would probably

lead to no confident conclusions about the possibility of treatment

effects. The petition for reconciliation rate increases from 1899 to

1900, but not dramatically so. The decrement in the divorce rate from

1899 to 1900 is even less dramatic, and can not be confidently ruled

out as a chance occurrence by mere inspection. The analyses for change

in level of the petition for reconciliation and divorce rates at 1900

appear in the middle-upper and -lower portions of Figure 8. In the

lower-middle portion of the figure, the graphs of h(ylz) and t appear

for the divorce rate. The value of t is less than -3 for all likely

values of y. Hence, the rather small downward shift in the divorce

rate is nonetheless statistically significant and can not be reasonably

attributed to chance. The shift in level of the petition for reconcil-

iation rate is equally statistically significant for the Common Law

states; however, Whereas there was a decrement in the divorce rate at

1900, there was a statistically significant increment in the petition

for reconciliation rate. /t should be recalled that under the new Civil

Code, divorce became legal for Catholics in Common Law states for the

first time. One might speculate that the data support the conclusion

wfiginFirl,11111111111WWITWWFWqrfrIffwwWwwwwrIlwwww.w.w!
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that the new Civil Code brought about petitions for reconciliation

from Catholics in the Common Law states, but that the courts held to

their newly enacted unsympathetic attitude toward divorce. Of course,

such speculation goes far beyond the data.

The average divorce and petition for reconciliation rates for four

states under the Code Napolgon prior to 1900 are graphed in Figure 5.

There appears to be a downward shift of level in the divorce rate at

1900; however, the petition for reconciliation rate does not appear to

have been affected by the introduction of the new Civil Code. This

latter observation was borne out by the failure of t =iiickib to

attain significance in the test for a change in level at 1900 of the

petition for reconciliation rate. As can be seen in the upper-right

portion of Figure 8, t falls below +2 for approximately the upper 75%

of the likelihood distribution of y; at the maximum likelihood esti-

mate of Y, namely 0.67, the value of t is +1.10. The data on the

divorce rate for the Code Napoleon states show a statistically signi-

ficant downward dhift at 1900 (see the lower-right portion of Figure 8).



Conclusions

The conclusions we shall draw from the above analyses will be at

variance with those drawn by Wolf, lace, and Hax (1959) and Rheinstein

(1959). With respect to petitions for reconciliation proceedings, Wolf,

lake and Hax concluded the following:

The introduction of the new Civil Code [in 1900] has not re-
duced the increase of the nuMber of petitions for conciliation
proceedings and has thus not reduced the extent of the divorce
desire. Preponderantly the new law has not hat:4 any effect in
this respect. In some regions in Which the divorce law was liber-
alized one can Observe a certain increase of the trend. It is by
no means certain, however, whether this increatie would not have
occurred independent of the change in the law. Nowhere was the
progressive trend retarded. Even in the regions of the Prussian
law, where the divorce law was tightened, tha trend did not change
in any significant way.*

Rheinstein (1959, p. 493) observed that Wolf, LUke and Hax were

"certainly justified in concluding ...hat the draftsmen:of the new code

'have failed in their expectation of reducing the desire for divorce."

With respect to the divorce rate, Wolf, lace, and Hax concluded

that "the dhape of the law of divorce was neither the cause of the

divorce wave nor even one of its essential conditions. In the face of

other circumstances, the influence of the law did.not make itself felt

at all."

Rheinstein (1959, p. 495) concurred:

before 1900 the [divorce rate] was rising in the dis-
tricts of most and, since 1900, in those of all appellato courts.
/n a few court districts the trend shows a slight downward break
in 1900. The majority of the latter districts belongs to the
region of the Prussian Code, but there are among them also two
districts of Protestant common law. In all these districts the

*The translation is due to Rheinstein (1959, p. 493).
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break is small, and the trend rose continuously after'190a. While
the break in the Prussian law districts may be attributed to the
change of the law, it was insignificant and without lasting effect.
Nowhere did the change turn the trend downward; and nowhere did
it prevent its continuous rise. (Italics added.)

Both Scheidung und Scheidunqsrecht and gheinstein's review leave

us with the conclusion that

The experiment made by makers of the Civil Code refutes the
noticeAsic] that a limitation of the statutory catalogues of
grounds for divorce to situations of guilt could result in a re-
duction of the number of divorces or even in their rate of in-
crease. On the other hand, the present Marriage Law [of 19383
has refuted the apprdhension that the introduction of the dis-
ruption principle would naturally result in an increase of divorce.
No causal or even statistical connection exists in one direction
or the other.

gheinstein saw Wolf, Mike and Hax's work as confirmation of

Willcox's conclusion that "the immediate, direct and measurdble in-

fluence of legislation is subsidiary, unimportant, almost imperceptible."

(Willcox, 1897).

We contend that the conclusions just stated make an unfortunate

use of the word "significant" and that they depend for their validity

upon extrapolations of pre-1900 trends for Which there exist as a basis

neither compelling logical reasons nor convincing empirical evidence.

Furthermore, we feel that the only.conclusion which may be drawn from

the data with confidence is that the effect of the introduction of the

new Civil Code in 1900 is clearly reflected in both the divorce rate

and the petition for reconciliation rate.

All too frequently, social scientists extended the meaning of the

term "significant" beyond its strictly appropriate sense as it applies

to statistical hypothesis testing and made unwarranted interpretations
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of social value, merit, or importance of data when they are merely in-

ferentially reliable -- the appropriate meaning of "statistically sig-

nificant." Having been disabused of this confusion in our enlightened

age, social scientists now react quite cautiously to the words "signi-

ficant" or "insignificant" when they are applied to data; they are

careful to read inferential reliability into the word and nothing else.

Thus, gheinstein risked serious misinterpretation of the facts When he

chose to call the break in the divorce rate curve at 1900 "insignifi-

cant" without the benefit of a valid statistical analysis and without

apprising the reader of the value system against which he judged the

downward Shift to be without social value or importance -- the populat

sense of "insignificant." We have dhown that the changes in level of

the divorce and petition for reconciliation rates around 1900 are

statistically significant (with the exception of the petition for re-

conciliation rate in the Code Napoleon states). It does not seem

justifiable to refer to the Shifts in level as "insignificant" in any

inferential statistical sense.

It was also concluded above that if any effect of the 1900 revi-

sion of the divorce laws did occur it was "temporary" or "without last-

ing effect." It was claimed that granting a remote possibility of an

effect of the new Civil Code the graphs of the divorce rate and the

petition for reconciliation rate quickly returned to a trend line one

could extrapolate from the pre-1900 trends. Such a casual impression

can be "read into" the graphs in Figures 1-5, though in most instances

it is equally easy to confirm an impression of the decrement accruing

during 1900 lasting through 1914. However, both impressions are
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uncritical. Why must one assume that a somewhat linear trend from 1881

to 1899 should continue from 1900 to 1913 or 1914? The answer is of

course that one need not. In fact, to do so is a matter of faith. One

could argue that the new Civil Code was instrumental in praventing an

exponential increase of the divorce and petition for reconciliation

rates after 1900.* But to argue either point goes beyond the data.

Idthout compardble "control groups" states like those in the German

Empire Idhose divorce laws were not revised in 1900 -- no unequivocal

answer can be given to the question "What would the post-1900 trend

of the divorce and petition for reconciliation rates have been?"

Previous discussions of the data in scl;eidunq und Scheidungsrecht

by gheinstein and Wolf, Iiike and Hax have discredited the one conclu-

sion Which can be drawn with defensible validity. The time-series

quasi-experiment rivals the completely randomized experimental design

for validity in some instances. But the inference which enjoys a

healthy measure of validity concerns an instantaneous dhift in the

level of the time-series at the introduction of the experimental treat-

ment and not suppositions dbout how the time-series dhould behave long

after the treatment bas been introduced. There appears to be little

doubt that tle revision of the divorce laws in 1900 did produce statis-

tically significant effects on bcth the divorce and petition for

*In the U.S. the divorce rate was rising at a faster rate during the
second half of the period from 1887-1917 than it was during the first
half of that period. The divorce rate rose 31 points (47 to 78) from
1887 to 1902, but it rose 42 points (78 to 120) from 1902 to 1917. A
comparison of the pre-1900 and post-1900 trend lines for both the di-
vorce rate and the petition for reconciliation rate in Germany reveals
dbout the same acceleration of the rates after 1900..
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reconciliation rates. Whether the effects were temporary or relatively

permanent cannot be determined validly from the available data. The

supposition that the effects were temporary should not be cited as

though it somehow calls into question the one conclusion for which

convincing evidence exists, namely that both the divorce and petition

for reconciliation rates dhow the evidence of adoption of the new Civil

Code in 1900.
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Chapter V

AN ANALYTIC TECHNIQUE EMPLOYING A CHANGE IN DRIFT
OF AIME-SERIES ASSOCIATED WITH
THE INTRODUCTION OF A TREATMENT

The model of Chapter IV with its procedures.for the

estimation and significance testing of both the constant

drift, 11, of a time-series and its instantaneous.dhift in

level, 6, at the introduction of a treatment provides a

powerful tool for.analyzing a large class'of time-series

experiments. In this Chapter, we dhall report on an even

more general model and analysis which were developed by
I.

Dx. George C. Tiao for use in this project.

The Problem

It may occur that the effect of the introduction of a

treatment, To. into a time-series does not result in an

instantaneous change in the level of the series-but does

change the direction of its drift. The series of observa-

tions in Figure 1 evidence no change in level at T but a

change in direction of drift. In Figure 2, bcth Changes

at T.are present.
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01131011)........1

I ) Ii Time
1 2 3 4 .5 6 7 8

Figure 1. A Time-Series Showing a Change of Direction of
Drift but No Change in Level at T.

Figure 2. A Time-Series Showing Both a Change in Level
and a Change of Direction of Drift at T.
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The model of Chapter IV can be modified so that a para-

meter descriptive of a change in p, the drift of the series,

is incorporated. We shall see how it is then possible to

estimate all of the parameters in the model for a given

value of Y and to test hypotheses dbout each. Finally, the

likelihood distribution of y can be found for a set of n

observations for use in inferential analyses of 6, p, and

the change in 11.

The Model

Let zt denote the observation of a series at time t.

The following model is proposed for the nl observations

prior to the introduction of a treatment T:

t-1
izt=L+yp(t-1)+p+y+y Z a.+a

j=1 ts

(1)

Where the interpretation of the elements of the model are

identical to their interpretation in Chapter TV. The fol-

lowing model is put forward as descriptive of the behavior

of the series for the n2 observations following the intro--

duction of T:

t-1
zt NE L + yp(t-1) + p + yA(t-n1-1) + A + y a. + a + 6, (2)

j=1 J t
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where 6 is the dhange of level of the series between times

ni and ni -I- 1, and A is the change in the drift of the

series between these two times. Prior to T, the series

drifts (an the average) at a rate of yu units (up or down

depending on the sign of u) for each unit of time; after T,

the series drifts y(11 +A) units on the average for eadh

unit of time.

Analytic Procedures

As before, a collection of n 4 n observations of1 -2

z are made; these values of zt are then transformed for a

given value of y as follows:

t-1

Y z (1-y)j-1 ztj
jmlt t

(3)
for t = 2, ..., n1 + n2.

The (al +22) by 1 vector of y's can be expressed as a

linear model in terms of the design matrix X, the vector of

parameters oT (L, 6, u, A) and the vector, e, of observa-

tions of a random normal vari6ble with variance a2, as in

Chapter IV:
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Par

Yl

Y2

yn
1-1

111

GNI GM OW IMP

yn
1+1

ynl+n2 -1

Yn
1
+n2

y

1

1

1

1

1

1

X0 + e

0 1

0 (1-y)

.

0 (1-y)111-2

0 (1-y)nra

1 (1-1)n,

1 (1y) n1+n2-2-

1 (1-y) pli-n2 '1

ses,

0

0

0

1

n2-2

(1.1) nri

P I

A

.A

rw

a1

For a single value of yl the least-squares estimates

of the parameters in 0 are obtained from the equation

(XTX)
-1

XTy..

The "residual variance" in fitting the model in (l)

(4)

and (2) to the observations zt is given by

2 (y - XO.)T(y - X4's ) ]/(n1 + 112 - 4) . ( 5)
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The following distributional statements about the esti-

mates of the parameters follow from the assumption of nor,-

mality of
t
.and traditional sampling theory:

-

a - A

t
111+1712-4'

nl+n2-4'

- L
scir eq'tn1+n2-4'

where

is the jth diagonal element of (XX) .
vow '

(6)

The dbove calculations are performed for a single

value of y Which is restricted to the open interval (0,2).

Since y is generally unknown, information regarding its

likely values must be found from the data themselves. The
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likelihood distribution of y given the ni + n2 observations

z
t is given -- to within a constant of proportionality --

by formula (7):

h(Ylz) IXFX1-1/2 s-(nl+n2 -3)
(7)

Suppose one wishes to test the following hypotheses at

the a-level of significance:

6 = 0,

6 0,

H
o
: A = O.

H : A it O.

In this instance, the investigator wishes to ascertain

whether or not the introduction of a treatment between time

and time + 1 results in either an instantaneous ihift

of level of the series, an instantaneous dhift in the direc-

tion of the drift of the series, or both.

For each value of y between 0 and 2, the values of a,

a and s2 are obtained using formulas (4) and (5). The null

hypotheses Ho: 6 = 0 and Ho: A = 0 are tested with the t-

statistics t a/(4741) and t = ) Which both have

Student's t-distribution with ma +112 - 4 degrees of free-

dom if the null hypotheses are true. These values of t are

likewise calculated for each value of y between 0 and 2.
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Next, the likelihood distribution of Y is determined and

the graph of t for a and the graph of t for are inspected

over the range of y's Which are shown to be likely by

inspection of h(y1Z). It is determined Whether the value

of t for either 6 or A tends to be significant [i.e., out-

side the 100(a/2) and 100(1 - a/2) percentile points in the

t-distribution with ni +.112 - 4 df] or nonsignificant over

the range of likely values of y. Of course, very large (in

SAP-P)absolute value) values of t = agsfre) or t (

lead to rejection of H 6 = 0 or H : A = 0, .respectively.

Computer Programs

Computer programs for the analyses in Chapter ltr and

this chapter appear as Appendices A and B, respectively,

to this report. Source decks for both programs are avail-

able upon request from the authors.
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Appendix A

Computer Program for Analysis of
Time-Series Experiment with Constant Drift



Appendix B

Computer Program for Analysis of
Time-Series Experiment with
Possible Change in Drift



C TIME SERIES INCORPORATING CHANGE IN DRIFT
C PARAMETER CARD ONE COLS. 1,2 NB=NUMBER OF PROBLEMSTO BE RUN
L CARDS 2,3,4 ARE REQUIRED FOR EACH PROBLEM TO BE RUN
C CARn 2 COLC.2-8n TITLE OF PROBLEM
C CARD 3 COLS 1-80 FORMAT FOR DATA CARD5..IN THE FORM (FORMAT)
C CARD 4 COLS. 1-4 NUMBER OF PRE TREATMENT MEASURES. COLS. 5-8 NUMBER OF
C POST TREATMENT MEASURES. .COL. 9, 1 IF CORRELOGRAM REQUIRED, 0 OTHERWISE
C CARD 5 ETC. DATA CARDS FOR FIRST PROBLEM NO SEPERATION BETWEEN PRE AND POST
C TREATENT DATA

DIMENSION Z(500),Y(50(),X(500,4),XTXIN(4,4),XTX(4,4),XTY(4)
DIMENSION THETA(4),FMT(18),TITLE(18),PD(200),XOUT(201,11)
DIMENSION SE(4),T(4),6(4,1)
DIMENSION XX(200,10),DELCON(20095),FNAM(5,5),G1(5),G2(5),G3(5),G4(
15),G5(5),G6(5),G7(5),G8(5),G9(5),G10(5)
DATA G1/20HT..CHANGE IN LEVEL /

DATA G2/20HT..CHANGE IN SLOPE /

DATA G1/20HSCALFD POSTERIOR /

DATA G4/20HLOWER 99 PERCENT /

DATA G5/20HLOMER 95 PERCENT /

DATA G6/20HDFLTA /

DATA G7/20HUPPER 95 PERCENT /

DATA 38/20HUPPER 99 PERCENT /

XXCK=1.0E-15
NRB=0
READ(5,36)NB

36 FORMAT(I2)
39 READ(5,1)(TITLE(I),I=1,18)
1 FORMAT(18A4)

...it(=n

NIT=0
G=o.ni
NRR=NRR+1
WRITE(6,37)NRR

37 FORMAT(//9H PROBLEM I21/)
WRITE(611)(TITLE(I),I=1,18)
READ(5,1)(FMT(I),I=1,18)
READ(5,3)N1,N2,NCC
FORMAT(2I4,I1)
NTOT=N14.N2
READ(5,FMT) (Z(I),I=1,NTOT)
WRITE(6,601)N1,N2

601 FORMAT(//8X,4H N1=I3,4H N2=.13//)
WRITE(6,602)

602 ,-ORMAT(15H INPUT DATA)
WRITE(6,600)(Z(I),I=1,N1)

600 FORMAT(5(1XE13.5))
NNN=N1,-1
WRITE(6,603)(Z(I),I=NNN,NTOT)

603 FORMAT(//5(1XE13.5))
IF(NCC)702,701,702

702 CALL CORREL (N1,N2,Z)
701 CONTINUE

VRITE(6,666)
666 FORMATC1H0)

WRITE(6,22)
22 FORMAT(1X114H RESIDUAL T FOR CHANGE IN T

1 FOR T FOR CHANGE IN T FOR SCALED)
W2ITE(6,2022)

2022 FORMAT(1X117HGAMMA VARIANCE LEVEL LEVEL LEVEL
1CHANGE SLOPE SLOPE SLOPE CHANGE POSTERIOR)



25 CONTINUE
.0 CALCULATION OF Y SCORES FROM THE DATA ..CHECK.FOR UNDERFLOW WHEN GAMMA
C IS 1.0 AND Y(N) IS NEARLY EQUAL TO Y(N-1)

Y(1)=Z(1)
DO 5 I=2,NTOT
II=I-1
YY=ABS(Y(II))
IF(YYXXCK)42,42,45

45 IF(YY.000001)40,40,41
.40 GG=As5(1.n-G)

IF(GG.001)42,42,41
42 Y(I)=Z(I)Z(II)

GO TO 5
41 Y(I)=(Z(I)Z(II))+(1.0G)*Y(II)
5 CONTINUE

C CALCULATION OF WEIGHTS, IF ABSOLUTE VALUE OF X IS LESS THAN 1.0E-15, THEN
C IS SET EQUAL TO ZERO TO PREVENT UNDERFLOW

DO 1000 T=19NTOT
1000 X(191)=1.0

DO 2000 I=1,N1
2000 X(192)=0.0

NNN1=N1+1
DO 2001 I=NNN1,NTOT

2001 X(192)=1.0
X(193)=1.0
X(2,3)=1.0G
DO 6 I=3,NTOT

X(193)=X(293)*X(II,3)
XXX=ABS(X(193))
IF(XXCKXXX)6,6,32

32 X(I.3)=0.0
6 CONTINUE

DO 7 I=1.N1
7 X(1,4)=0.0

NN=N1+1
DO 8 I=NNoNTOT
II=INi
X(I.4)=X(11.3)
XXX=ABS(X(I,4))
IF(XXCKXXX)8,8,33

33 X(I.4)=0.0
8 CONTINUE

DO 11 1=1.4
DO 11 J=1.4
XTX(I,J)=0.0

11 XTXIN(I,J)=0.0
C CALCULATION OF X TRANSPOSE X INVERSE

DO 4050 1=1,4
DO 4050 J=1,4
DO 4050 K=1.NTOT

4050 XTX(19J)=XTX(19J)+X(K,I)*X(K.J)
DO 2002 1=1,4
DO 2002 J=194

2002 XTXIN(I,J)=XTX(19J)
DO 4061 1=1,4

4061 XTY(I)=0.0
DO 4062 1=1,4
DO 4062 J=1,NTOT

4062 XTY(I)=XTY(I)+X(J,I)*Y(J)



DO 2003 1=1,4
- P(T41)=XTYCII

CALL NlATINV(XTXIN444RoloDET)
DO 2020 1=1,4

2020 THETA(I)=B(I,1)
DO 20n4 1=1,4

2004 SF(I)=XTXIN(I1I)
FNTOT=NTOT
YTY=04.0

C CALCULATION OF THE RESIDUAL VARIANCE
NO 18 I=1,NTOT

18 YTY=YTY+Y(T)**2
DO 31 1=144

31 XTY(T)=0.0
DO 19 J=1,4
DO 19 1=144

19. XTY(J)=XTY(J)+THETA(I)*XTX(I,J)
FITVAR=0.0
DO 20 1=144

20 FTTVAR=FITVAR+XTY(I)*THETA(I)
S=YTYFITVAR
S=5/(FNTOT-4.0)

C CALCULATION OF THE STANDARD ERRORS OF DELTA AND, MU
DO 2010 I=144
SE(I)=SORT(S*SE(I))

2010 T(I)=THETA(I)/SE(I)
C CALCULATION OF THE POSTERIOR DISTRIBUTION... LOGS ARE USED TO PREVENT
C OVERFLOW

SK=ALOG(S)
Ds7T=ALOG(DET)
H=(-05*DET)(.5*(FNTOT-4.0)*SK)
H=.4142945*H
JK=JK+1
XO1JT(JK,1)=G
XOUT(j<4?)=S
XIUT(Jt<43)=THETA(3)
XCUT(JK44)=T(3)
XOUT(JK45)=THETA(4)
XOUT(JK46)=T(4)
XOUT(JK47)=THFTA(1)
XOUT(JK48)=T(1)
XOUT(JKs9)=THETA(2)
XOUT(JK410)=T(2)
IF(NTOT-30)1004,100541005

1005 DFLCON(JK41)=THETA(4)-2.58*SE(4)
DELCON(JK42)=THETA(4)-1.96*SE(4)
DELCON(JK43)=THETA(4)
DELCON(jK44)=THETA(4)+1.96*SE(4)
DELCON(JK45)=THETA(4)+2.58*SE(4)

1004 NIT=NIT+1
Pn(NIT)=H

C INCPEMFNT GAM!v1A Y .01. AND ITERATE
G=G+1.r,onnnonnEo2
IF(NIT-199)30,30,26

30 GO TO 25
26 CONTINUE

C FIND MAXIMUm, VALUE. OF THE POSTERIOR
FIN=PD(1)
DO 506 :=2,199
IF(FINPD(I))50545064506



505 FIN=PD(I)
506. CONTTNIIE

C RESCALE POSTERIOR BY DIVIDiNG ALL VALUES OF THE POSTERIOR BY THE MAX VALUE
DO 507 1=1,199
PD(I)=PD(I)FIN
YY=ARS(PD(I))
IF(YY-35.0)509,508,508

508 PD(I)=0.0
TO 507

509 PD(I)=PD(I)/.4342945
PD(I)=EXP(PD(I))

507 CONTINUE
C CONVERT AREA OF THE POSTERIOR DISTRIBUTION TO UNIT AREA. BY METHOD OF TRAPE

AREA=0.0
DO 511 1=2,199
IT=I-1

511 AREA=AREA+.005*(PD(I)+PD(II))
DO 512 1=1,199

512 PD(I)=PD(I)/AREA
DO 513 1=1,199

513 XOUT(1,11)=PD(I)
DO 514 1=1,199

514 WRITE(6,23)(XOUT(I,J),J=1,11)
23 FORMAT(1X,1F5.2,10(1XE10.3))

DO 700 1=1,199
XX(I,1)=XOUT(I,5)
XX(1,2)=XOUT(I,9)

700 XX(I,73)=XOUT(I,11)
-M=199
N=3
ISCALE=1

C TITLE FOR PLOT OF THE POSTERIOR DISTRIBUTION AND FOR STUDENT T
DO 760 1=1,5
FNAM(1,I)=G1(I)
FNAM(2,I)=G2(I)

760 FNAM(3,I)=G3(I)
CALL PLOT(M,N,ISCALE,XX,FNAM)
N=5

C PLOT CONFIDENCE INTERVALS AROUND DELTA
IF(NTOT-30)1007,1006,1006

1006 DO loos 1=1,199
DO 1008 J=1,5

1008 XY(I,J)=DELCON(I,J)
DO 756 1=1,5
FNAM(1,I)=G4(I)
FNAM(2,I)=G5(I)
FNAM(3,I)=G6(I)
FNAM(4,I)=G7(I)

756 FNAM(5,I)=G8(I)
WRITE(6,1016)

1016 FORMAT(//34H CONFIDENCE INTERVALS AROUND DELTA)
WPTT(6,1017)

1017 F0RYAT(/3X,5HGAMMA,2X,52H LOWER 99 LOWER 95 DELTA UPPER 95
1 UPPFR 99)
c)0 1019 1=1,199

1019 WRITE(6,1018)XOUT(I,1),(DELCON(I,J),J=195)
1018 FORMAT(3X,1F5.2,1X5E10.3)

WRITE(6,1015)
1015 FORMAT(//1X,47H GRAPH OF CONFIDENCE INTERVALS AROUND'DELTA HAT)

CALL PLOT(M,N,ISCALE,XX,FNAM)



, 1007 NB=NR-1
IF(NB)38,38,39

38 CONTINUE
STOP
FmD
SUBROUTINE CORREL (N19N2,Z)
DIMENSION 7.(500),RLAG(400),Y(500),XX(200/10),FNAM(5,5)
r)ImFNSION G9(5),G10()
DATA G9/20HPRE TREATMENT DATA /

DATA G10/20HPOST TREATMENT DATA /
NTOT=N1+N2

1/4. PREPARATION OF TITLE FOR CORRELOGRAM PLOT
DO 804 JJJ=1,4
IND=JJJ
IF(IND-2)805/8069807

807 IF(IND-4)805,8069806
805 CONTINUE

DO 757 1=1,5
757 FNAM(19I)=G9(I)

GO TO 808
806 CONTINUE

DO 758 I=1,5
758 FNAM(1,I)=G10(I)
808 CONTINUE

GO TO (809,81098119812),IND
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT DATA

809 NLAG=N1
NLOW=1
NTOP=N1
WRITF(60813)

813 FORMAT(//38H CORRELOGRAM OF PRE TREATMENT RAW DATA)
GO TO 814

C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT DATA
810 NLAG=N2

NLOW=N1+1
NTOP=NTOT
WRITF(6,815)

815 FORMAT(//39H CORRELOGRAM OF POST TREATMENT RAW DATA)
814 II=0

DO 706 I=NLOW,NTOP
II=II+1

706 Y(II)=Z(T)
GO TO 709

C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT
C DIFFERENCES BETWEEN SUCCESSIVE OBSERVATIONS

811 NLAG=N1-1
NLOW=1
NTOP=N1-1
WRITE(6,800)

800 FORMAT(//41H CORRELOGRAM OF PRE TREATMENT DIFFERENCES)
GO TO 816

C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT
C DIFFERENCES BETWEEN SUCCESSIVE OBSERVATIONS
812 NLAG=N2-1

NLOW=N1+1
NTOP=NTOT-1
l'IRITE(6,803)

803 FORMAT(//42H CORRELOGRAM OF POST TREATMENT DIFFERENCES)
816 IT=0

DO 707 I=NLOW,NTOP



I I=II+1
1K=I+1

707 Y(II)=Z(IK)-Z(I)
709 JJ=NLAG*3/4

DO 716 K=1,JJ
NUP=NLAG-K
.CROS=00
SUM1=0.0
SUM2=0.0
SUMS1=00
SUMS2=00
DO 703 I=1,NUP
NIND=I+K
CROS=CROS+Y(I)*Y(NIND)
SUM1=SUM1+Y(I)
51JM2=5UM2+Y(NIND)
SUMS1=SUMS1+Y(I)*Y(I)

703 SUMS2=SUMS2+Y(NIND)*Y(NIND)
FNUP=NUP
DNUM=CROS-(SUM1*SUM2)IFIUP
DEN=(SUMS1-(SUM1*SUM1)/FNUP)*(SUMS2.-(SUM2*SUM2)/FNUP)
DEN=SORT(DEN)
.RLAG(K)=DNUM/DEN
WRITE(6,704)K,RLAG(K)

704 FORMAT(1X,5H LAG=I3,3X,3H R=E63)
716 CONTINUE

ISCALE=1
N=1
M=JJ
DO 650 I=1,JJ

650 XX(I,1)=RLAG(I)
CALL PLOT(M,N,ISCALE,XX,FNAM)

804 CONTINUE
RETURN
END
SUBROUTINE PLOT (M,N,ISCALE,XX1FNAM)

C ADAPTED FROM THE SUBROUTINE-GRAPH- OF -PERSUB- WRITTEN BY JHWARD,J-,
C KATHLEEN DAVIS, AND. JANICE BUCHHORN,LACKLAND AIR FORCE BASE,TEXAS
C ADAPTED FOR FORTRAN II BY T0MAGUIRE,UNIVERSITY .OF ILLINOIS

DIMENSION RAT(10),FND(5,10),ENCRMT(10),PA(120),FMT(3),PB(10)
DIMENSION XX(200,10),AMAX(10),AMIN(10),B(10),FNAM(5,5),BB(10)
DATA BB(1),BB(2),BB(3),BB(4),BB(5),BB(6),BB(7),BB(8),BB(9),BB(1())/
11H1,1H5,1HD,1H5,1H1,1H0,1HX11HM,1HH,1HA/
DATA PCROSS,PBLANK,PDASH,PERIOD/1H*,1H 91H-o1H/
DATA FMT(1),FMT(2),FMT(3)/1H.,1H0,1HY
IF(N-5)200,201,200

201 DO 276 1=1,5
276 R(I)=RR(I)

no.To 202
200 DO 277 1=1,3

11=1+5
277.R(I)=BR(I1)

202 CONTINUE
99 FMS=FMT(ISCALE-1)
98 DO 100 I=1,N

AMIN(I)=±1E+37
100 AMAX(I)=-1E+37

C SEAPCH FOR MAXIMA AND MINIMA
ARMIN=AMIN(1)
ARMAX=AMAX(1)



DO 101 I=19M
DO 101 J=19N
COMP=XX(19,)-AMIN(J)
IF(COMP)40029400394003

4002 AMIN(J)=XX(I,J)
4003 COMP=XX(19J)-AMAX(J)

IF(COMP)101910194004
4004 AMAX(J)=XX(19J)
101 CONTINUE

IF(N-5)250,2519250
251 DO 252 J=195

AMAX(J)=AMAX(5)
252 AMIN(J)=AMIN(1)
250 CONTINUF

N1=N
DO 108 J=19N

C COMPUTE RESOLUTION OF GRAPH
108 RAT(J)=(AMAX(J)-AMIN(J))/110.

DO 110 J=19N
ENCRMT(J)=(AMAX(J)-AYIN(J))/4.
FND(11J)=AMIN(J)+.05
COMP=AMIN(J)
IF(COMP)40059400694006

4005 FND(19J)=FND(19J)-.10
4006 FND(59J)=AMAX(J)-.05

COMP=AMAX(J)
IF(COMP)400794008940C8

C PREPARE ORDINATE LABELS
4007 FND(59J)=FND(5,J)-.10
4008 FND(29J)=AMIN(J)+ENCRMT(J)+.05

COMP=FND(29J)
IF(COMP)40099401094010

4009 END(29J)=FND(29J)-.10
4010 FND(39J)=AMIN(J)4-(ENCRMT(J)*2.)+.05

COMP=FND(39J)
IF(COMP)4011,401294012

4011 FND(39J)=END(39J)-.10
4012 FND(49J)=AMAX(J)-ENCRMT(J)+.05

COMP=FND(49J)
IF(COMP)401391109110

4013 FND(49J)=FND(49J)-.10
110 CONTINUE

C PRINT LEFT HAND LABELS
WRITE(697)((FNO(19J)9I=195)9B(J)9J=19N1)

7 FORMAT(///1XF6.1921XF6.1921XF6.1921XF6.1921XF6.193XA1)
C PLOT LEFT HAND MARGIN

DO 4014 1=1959
4014 PA(I)=PDASH

WRITE(698)(PA(I)9I=1959)
8 FORMAT(1X959A2)

DO 140 1=11M
DO 4015 11=1,120

4015 PACIT)=PRLANK
Do 121 IX=27981927

121 PA(IX)=PERIOD
NCOMP=I

4016 NCOMP=NCOMP-10
IF(NCOYP)1249401794016

4017 CONTINUE
DO 123 IX=6,12092



123 PA(IX)=PDASH
C RESCALE DATA POINTS
124 DO 135 K=19N

ww7-7TWIWMWIMIWPggmmoPWWmwmmwmmmmwWwPww""mw.--,-,----,,----

ZL=(XX(19K)AMIN(K))/RAT(K)+1.0
L=ZL
1F(L-1)60189601996019

6018 L=1
6019 1F(110L)60209602196021
6020 L=110
6022 IF(PA(L).EO.PBLANK)GO TO 130

IF(PA(L).EQ.PERIOD)G0 TO 130
IF(PA(L)0EQ.PDASH)G0 TC 130
PA(L)=PCROSS
GO TO 135

130 P(K)=(K)
PA(L)=PB(K)

135 CONTINUE
IF(ISCALF-1)6023913696023

6 FORMAT(A1)
6023 WRITE(696)FMS

C PLOT DATA POINTS
136 WRITE(692)I9PERIOD0(PA(J),J=19110)9PERIOD9I
2 FORMAT(1X9139A19110A19A19I3)
140 CONTINUE

DO 6026 1=1959
6026 PA(I)=PDASH

WRITE(698)(PA(I)9I=1959)
WRITE(6,7)((FND(19J)9I=195)9B(J),J=19N1)

142 WRITE(693)
3 FORMAT(1H0910X916HPLOT DESCRIPTION/1H0,7X95HTITLE,10X99HCHARACTER9

14X97HMINIMUM94X97HMAXIMUM,4X910HRESOLUTION)
DO 122 J=19N

122 WRITE(694)(FNAM(J9K)5K=195)9B(J)9AMIN(J)9AMAX(j)9RAT(J)
4 FORMAT(1X95A492X9A197XF8.393XF8.394XF8,3)

RFTURN
END
SUBROUTINE MATINV(A9N9B9M9DETERM)
MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
.DIMENSION A(4,4)99(491)9IPIVOT(4)9INDEX(492)9PIVOT(4)
EQUIVALENCE (IROW9JRCW)1(ICOLUM,JCOLUM)9(AMAX9T9SWAP)
INITIALIZATION

10 DETERM=1.0
15 DO 20 J=1,N
20 TplynT(J)=0
30 DO 550 I=19N

SEARCH FOR PIVOT ELEMENT
0140 AmAx=0.0
0145 DO 105 J=11N
0150 IF (IPIVOT(J)-1) 609105960 0160 DO 100 K=19N
0170 IF (IPIVOT(K)-1) 80,1009740
0180 IF (ABS (AMAX)ABS (A(J9K))i 859 859 100 0185 IROW=J
0190 ICOLUY=K.
0195 AMAX=A(...19K)
01ion (7';',!TT;7
02115 (Y-yo-ru,iHr

110 IPPPW (1COL(J,4)=IPIVOT(ICOLUM)+1
02INTCHANCI ROWS TO PUT PIVOT ELEMENT ON DIAGONAL 07130 IF TROWICOLUM) 14092609140
02

02



a

140 DETERM=DETERM
, 150 DO 200 L=.1,N
160 SWAP=A(IROW5L)
170 A(IROWIL)=A(ICOLUM,L)
200 A(ICOLUM,L)=SI:AP
205 IF(M) 260,260,210
210 r)0 250 L=19M
220 SWP=B(IROW,L)
230 B(IROW,L)=B(ICOLUM,L)
250 R(ICOLUM,L)=SWAP
760 INDExtr,1)=IRow
270 INDFACI,2)=IcoLum
310 PIVOT(I)=A(ICOLUM9ICOLUM)
320 DETERM=DETERM*PIVOT(I)

IF(PIVOT(I)) 330,720,330
DIVIDE PIVOT ROW 5Y PIVOT ELEMENY

330 A(ICOLUM,ICOLUM)=1.0
340 DO 350 L=1,N
350 ACICOLUMIL)=A(ICOLUM,L)/PIVOT(I)
355 IF(M) 180,380,360
360 no 370 L=.i,M
370 B(ICOLUM,L)=B(ICOLUM,L)/PIVOT(I)

REDUCE NONPIVOT ROWS
380 DO 550 L1=1,N
390 IF(L1ICOLUM) 400,550,400
400 T=A(L1tICOLUM)
420 A(L1,ICOLUM)=0.0
430 DO 450 L=1,N
450 A(L1,L)=A(L1,L)A(ICOLUM,L)*T
455 IF(M) 550,550,460
460 DO 500 L=.1,M
500 B(L1,L)=B(L1,L)B(ICOLUM,L)*T
550 CONTINUE

INTERCHANGE COLUMNS
600 DO 710 I=1,N
610 L=N+1I
620 IF(INDEX(L,1)INDEX(L,2)) 630,710,630
630 JROW=INDEX(L91)
640 JCOLUM=INDEX(L12)
650 DO 705 K=15N
6C0 SWAP=A(K,JROW)
670 A(K,JROW)=A(KoJCOLUM)
700 A(K,JCOLUM)=SWAP
705 CONTINUE
710 CONTINHF

RETURN
720 WRITF S 1730 )

730 FORMAT (20H MATRIX IS SINGULAR)
740 RETURN.

END
IF(COMP)4005,4006,4006

41w.



% C TIME SERIES WITH CONSTANT DRIFT
PARAMETER CARD ONE COLS. 192 NB=NUMBER OF PROBLEMS TO BE RUN

C CARDS 2,394 ARE REQUIRED FOR EACH PROBLEM TO BE RUN
CARD 2 C0L502-80 TITLE OF PROBLEM

C CARD 3 COLS 1-80 FORMAT FOR DATA CARDS00IN THE FORM (FORMAT)
C CARD 4 COLS. 1-4 NUMBER OF PRE TREATMENT MEASURES. COLS. 5-8 NUMBER OF

C CARD 5 ETC. DATA CARDS FOR FIRST PROBLEM NO SEPERATION BETWEEN PRE AND POST
C TREATMENT DATA

DIMENSION Z(500),Y(500),X(50093),XTKIN(393)9XTX(313),XTY(3)
D IMENSION THETA(3),FMT(18)9TITLE(18)9PD(200),XOUT(201910)
D IMENSION XX(200910),DELCON(200,5),FNAM(595)
DIMENSION G1(5)0G2(5)0G3(5)9G4(5),G6(5)9G7(5),G8(5),G9(5)9G5(5)
DATA G1/20HTo.CHANGE IN LEVEL /

DATA G2/20HSCALED POSTERIOR
DATA G3/20HLOWER 99 PERCENT
DATA G4/20HLOWER 95 PERCENT
DATA G5/20HDELTA
DATA G6/20HUPPER 95 PERCENT
DATA G7/20HUPPER 99 PERCENT
XXCK=1.0E-15
NBB=0
READ(5936)NB

36 FORMAT(I2)
39 READ(591)(TITLE(I),I=1,18)
1 FORMAT(18A4)

JK=0
N IT=0
G=0.01
NBB=NBB+1
WRITE(6937)NBB

37 FORMAT(//9H PROBLEM I21/)
WRITE(691)(TITLE(I),I=1,18)
READ(591)(FMT(I),I=1,18)
READ(593)N1,N29NCC

3 FORMAT(2I401)
NTOT=N1+N2
READ(59FMT)(Z(I),I=19NTOT)
WRITEC6,601)N1,N2

601 FORMAT(//8X94H N1=1394H N2=I3//)
WRITE(6,602)

602 FORMAT(15H INPUT DATA)
WRITE(6,600)(Z(I),I=1,N1)

600 FORMAT(5C1XE13.5))
NNN=N14-1
WRITE(69603)(Z(I),I=NNN,NTOT)

603 FORMAT(//5(1XE13.5))
IF(NCC)702,7019702

702 CALL CORREL (N19N2,Z)
701 CONTINUE

1jRITE(6,666)
666 FORMAT(1H0)

WRITE(6922)
22 FORMAT(1X,116H GAMMA RESIDUAL VAR L HAT MU HAT STD ERR

1 MU I FOR MU DELTA STD ERR DELTA T FOR DELTA POST DIST GAMMA)
25 CONTINUE

C CALCULATION OF Y SCORES FROM THE DATA ...CHECK FOR UNDERFLOW WHEN GAMMA
C IS 1.0 AND Y(N) IS NEARLY EQUAL TO Y(N-1)

Y(1)=Z(1)
DO 5 I=29NTOT



II=I-1
YY=ABS(Y(Ir))
IF(YYXXCK)42,42,45

45 IF(YY.000001)40,40,41
40 GG=ABS(1.0G)

IF(GG-001)42,42,41
42 Y(I)=Z(I)Z(II)

GO TO 5
41 Y(I)=(Z(I)Z(II))+(1.0G)*Y(II)
5 CONTINUE

C CALCULATION OF WEIGHTS, IF ABSOLUTE VALUE OF X IS LESS THAN 10E-15, THEN
C IS SET EQUAL TO ZERO TO PREVENT UNDERFLOW

DO 1000 I=1,NTOT
1000 X(I,1)=1.0

X(1,2)=1.0
X(2,2)=1.0G
DO 6 I=3,NTOT
II=I-1
X(I,2)=X(2,2)*X(II42)
XXX=ABS(X(1,2))
IF(XXCKXXX)6,6,32

32 X(1,2)=0.0
6 CONTINUE

DO 7 I=1,N1
7 X(I,3)=0.0

NN=N1+1
DO 8 I=NN,NTOT
II=IN1
X(I,3)=X(II,2)
XXX=ABS(X(I,3))
IF(XXCKXXX)8,8,33

33 X(I,3)=0.0
8 CONTINUE

C CALCULATION OF X TRANSPOSE X INVERSE
DO 11 1=1,3
DO 11 J=1,3
XTX(I,J)=040

11 XTXIN(I,J)=0.0
FNTOT=NTOT
XTX(1,1)=FNTOT
DO 1001 I=1,NTOT
XTX(1,2)=XTX(1,2)+X(I,1)*X(Is2)
XTX(1,3)=XTX(1,3)+X(I,1)*X(I,3)
XTX(2,2)=XTX(2,2)+X(I,2)**2
XTX(3,3)=XTX(3,3)+X(I,3)**2

1001 XTX(2,3)=XTX(2,3)+X(I,2)*X(1,3)
DO 1002 1=1,2
DO 1002 J=1,3

1002 .XTX(J,I)=XTX(I,J)
DET=XTX(191)*(XTX(2,2)*XTX(3,3)XTX(2,3)**2)
DET=DETXTX(2,1)*(XTX(1,2)*XTXL3,3)XTX(3,2)*XTX(1,3))
DET=DET+XTX(3,1)*(XTX(1,2)*XTX(2,3)XTX(2,2)*XTX(193))
XTXIN(1,1)=(XTX(2,2)*XTX(3,3)XTX(2,3)**2)/DET
XTXIN(292)=(XTX(1,1)*XTX(3,3)XTX(1,3)**2)/DET
XTXIN(3,3)=(XTX(191)*XTX(2,2)-!'XTX(1,2)**2)/DET
XTXIN(1,2)=(XTX(2,1)*XTX(393)XTX(3,1)*XTX(2,3))/DET
XTXIN(1,3)=(XTX(2,1)*XTX(3,2)XTX(391)*XTX(292))/DET
XTXIN(2,3)=(XTX(1,1)*XTX(3,2)XTX(3,1)*XTX(1,2))/DET
DO 1003 1=1,2
DO 1003 J=1,3



. 1003 XTXIN(J41)=XTXIN(I4J)
DO 13 1=143
THETA(I)=0.0

13 XTY(I)=0.0
DO 14 J=193
DO 14 I=1,NTOT

14 XTY(J)=XTY(J)+X(I4J)*Y(I)
C CALCULATION OF THETA... L HAT AND DELTA HAT

DO 15 J=1,3
DO 15 1=1,3

15 THETA(J)=THETA(J)+XTXIN(J4I)*XTY(I)
YTY=0.0

C CALCULATION OF THE RESIDUAL VARIANCE
DO 18 I=14NTOT

18 YTY=YTY+Y(I)**2
DO 31 1=143

31 XTY(I)=000
DO 19 J=143
DO 19 1=143

19 XTY(J)=XTY(J)+THETA(I)*XTX(I4J)
FITVAR=0.0
DO 20 1=1,3

20 FITVAR=FITVAR+XTY(I)*THETA(I)
S=YTYFITVAR
5=5/(FNTOT-300)

C CALCULATION OF THE STANDARD ERRORS OF DELTA AND MU

SMU=S*XTXIN(1,1)
SDELTA=S*XTXIN(343)
SMU=SORT(SMU)
SDELTA=SORT(SDELTA)
TMU=THETA(1)/SMU
TDELTA=T1ETA(3)/SDELTA

C CALCULATION 07 THE POSTERIOR DISTRIBUTION... LOGS ARE USED TO PREVENT

C OVERFLOW
SK=ALOG(S)
DET=ALOG(DET)
H=(.5*DET)(.5*(FNTOT-...3.0)*SK)
H=04342945*H
JK=JK+1
XOUT(.3K41)=G
XOUT(Je.<42)=5
XOUT(jK43)=THETA(2)
XOUT(JK44)=THETA(1)
XOUT(JK45)=SMU
XOUT(JK46)=TMU
XOUT(JK47)=THETA(3)
XOUT(JK48)=SDELTA
XOUT(JK49)=TDELTA
IF(NTOT-30)1004,1005,1005

1005 DELCON(JK41)=THETA(3)-2.58*SDELTA
DELCON(JK42)=THETA(3)-1.96*SDELTA
DELCON(JK43)=THETA(3)
DELCON(JK44)=THETA(3)+1.96*SDELTA
DELCON(JK45)=THETA(3)+2.58*SDELTA

1004 NIT=NIT+1
PDCN1T)=H

C INCREMENT GAMMA BY .01 AND ITERATE
G=G+1000000000E-02
/F(NIT-199)30,30,26

30 GO TO 25



26 CONTINUE
C FIND MAXIMUM VALUE OF THE POSTERIOR

FIN=PD(1)
DO 506 1=2,199
IF(FIN-PD(I))505,506,506

505 FIN=PD(I)
506 CONTINUE

C RESCALE POSTERIOR BY DIVIDING ALL VALUES OF THE POSTERIOR BY THE MAX VALUE

DO 507 1=1,199
PD(I)=PD(I)-FIN
YY=ABS(PD(I))
IF(YY-35.0)509,508,508

508 PD(I)=0.0
GO TO 507

509 PD(I)=PD(I)/.4342945
PD(I)=EXP(PD(I)) .

507 CONTINUE
C CONVERT AREA OF THE POSTERIOR DISTRIBUTION TO UNIT AREA BY METHOD OF TRAPEZO

AREA=0.0
DO 511 1=2,199
II=I-1

511 AREA=AREA+.005*(PD(I)+PD(II))
DO 512 1=1,199

512 PD(I)=PD(I)/AREA
DO 513 1=1,199

513 XOUT(I,10)=PD(I)
DO 514 1=1,199

514 WRITE(6,23)(XOUT(I,J),J=1,10)
23 FORMAT(3X,1F5.2,4X,9E11.3)

DO 700 1=1,199
XX(I,1)=XOUT(I,9)

700 XX(I,2)=XOUT(I,10)
M=199
N=2
ISCALE=1

C TITLE FOR PLOT OF THE POSTERIOR DISTRIBUTION AND FOR STUDENT T

DO 760 1=1,5
FNAM(1,I)=G1(I)

760 FNAM(20)=G2(I)
CALL PLOT(M,N,ISCALE,XX,FNAM)
=5

C PLOT CONFIDENCE INTERVALS AROUND DELTA

1F(NTOT-30)1007,1006,1006
1006 DO 1008 1=1,200

DO 1008 J=1,5
1008 XX(I,J)=DELCON(I,J)

DO 756 1=1,5
FNAM(1,I)=G3(I)
FNAM(29I)=C4(I)
FNAM(3,I)=G5(I)
FNAM(4,I)=G6(I)

756 FNAM(50)=G7(I)
WRITE(6,1016)

1016 FORMAT(//34H CONFIDENCE INTERVALS AROUND DELTA)

WRITE(6,1017)
1017 FORMAT(/3X,5HGAMMA,2X,52H LOWER 99 LOWER 95 DELTA UPPER 95

1 UPPER 99)
DO 1019 1=1,199

1019 WRITE(6,1018)XOUT(1,1),(DELCON(I,J),J=1,5).
1018 FORMAT(3X,1F5.2,1X5E11.3)



WRITE(691015)
1015 FORMAT(//1X947H GRAPH OF CONFIDENCE INTERVALS AROUND DELTA HAT)

CALL PLOT(MIN,ISCALE,XX9FNAM)
1007 N9=NR-1

IF(NB)38,38939
38 CONTINUE

CALL EXIT
L.

SUBROUTINE CORREL (N19N21Z)
DIMENSION Z(500)9RLAG(400),Y(500),XX(200,10),FNAM(5,5)
DIMENSION G8(5)9G9(5)
DATA G8/20HPRE TREATMENT DATA /

DATA G9/20HPOST TREATMENT DATA /
NTOT=N14.N2

C PREPARATION OF TITLE FOR CORRELOGRAM PLOT
DO 804 J.J.J=194
IND=JJJ
IF(IND-2)80598069807

807 IF(IND-4)8059806,806
805 CONTINUE

DO 757 1=195
757 FNAM(19I)=G8(I)

GO TO 808
806 CONTINUE

DO 758 1=195
758 FNAM(19I)=G9(I)
808 CONTINUE

GO TO (809,8109811,812)1IND
C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT DATA

809 NLAG=N1
NLOW=1
NTOP=N1
WRITE(69813)

813 FORMAT(//38H CORRELOGRAM OF PRE TREATMENT RAW DATA)
GO TO 81k.

C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT DATA
810 NLAG=N2

NLOW=N14-1
NTOP=NTOT
WRITE(69815)

815 FORMAT(//39H CORRELOGRAM OF POST TREATMENT RAW DATA)
814 II=0

DO 706 I=NLOW,NTOP
11=11+1

706 Y(II)=Z(I)
GO TO 709

C PREPARATION OF DATA TO.CALCULATE AUTOCORRELATIONS FOR PRE TREATMENT
C DIFFERENCES BETWEEN SUCCESSIVE OBSERVATIONS

811 i\ILAG=N1-1
NLOW=1
NTOP=N1-1
WRITE(69800).

800 FORMAT(//41H CORRELOGRAM OF PRE TREATMENT DIFFERENCES)
GO TO 816

C PREPARATION OF DATA TO CALCULATE AUTOCORRELATIONS FOR POST TREATMENT
C DIFFERENCES BETWEEN SUCCESSIVE OBSERVATIONS

812 NLAG=N2-1
NLOW=N7+1
NTOP=NTOT-1
WRITE(69803)



803 FORMAT(//42H CORRELOGRAM OF POST TREATMENT DIFFERENCES)
816 II=0

DO 707 I=NLOW,NTOP
TI=II+1
IK=I+1

707 Y(II)=Z(IK)-Z(I)
709.JJ=NLAG*3/4

DO 716 K=1,JJ
NUP=NLAG-K
CROS=0.0
SUM1=0.0
SUM2=0.0
SUMS1=0.0
SUMS2=0.0
DO 703 I=1,NUP
NIND=I+K
CROS=CROS+Y(I)*Y(NIND)
SUM1=SUM1+Y(I)
SUM2=SUM2+Y(NIND) .

SUMS1=SUMS1+Y(I)*Y(I)
703 SUMS2=SUMS2+YtNIND)*Y(NIND)

FNUP=NUP
DNUM=CROS-(SUM1*SUM2) /FNUP
DEN=(SUMS1-(SUM1*SUM1)/FNUP)*(SUMS2-(SUM2*SUM2)/FNUP)
DEN=SQRT(DEN)
RLAG(K)=DNUM/DEN
WRITE(6,704)K,RLAG(K)

704 FORMAT(1X,5H LAG=I3,3X,3H R=F6.3)
716 CONTINUE

ISCALE=1
N=1
M=JJ
DO 650 I=1,JJ

650 XX(I,1)=RLAG( I)
CALL PLOT(M,N.TSCALE,XX,FNAM)

804 CONTINUE
RETURN
END
SUBROUTINE PLOT (M,N,ISCALE,XX,FNAM)

C ADAPTED FROM THE SUBROUTINE-GRAPH- OF -PERSUB- WRITTEN BY J.H.WARD,JR.,
C KATHLEEN DAVIS, AND JANICE BUCHHORN,LACKLAND AIR FORCE BASE,TEXAS
C ADAPTED FOR FORTRAN II BY T.O.MAGUIRE,UNIVERSITY OF ILLINOIS

,DIMENSION RAT(10),FND(5,10),ENCRMT(10),PA(120),FMT(3),P5(10)
DIMENSION XX(200,10),AMAX(10),AMIN(10),B(10),FNAM(5,5),BB(10)
DATA B8(1),BB(2)088(3),BB(4),BB(5),BB(6),BB(7),BB(8),B8(9),BB(10)/-
11H1,1H5,1HD,1H5,1H1,1H0,1HX,IHM,1HH,1HA/
DATA PCROSS,PBLANK,PDASH,PERIOD/1H*,1H ,1H-,1H./
DATA FMT(1),FMT(2),FMT(3)/1H ,1H0,1H-/
IF(N-5)200,201,200

201 DO 276 1=1,5
276 B(I)=BB(I)

GO TO 202
200 DO 277 1=1,3

11=1+5
277 BtI)=BBCII)
202 CONTINUE
99 FMS=FMT(ISCALE-1)
98 DO 100 I=1,N

AMIN(I)=1.E+37
100 AMAX(I)=-1.E+37

I.



C SEARCH FOR MAXIMA AND MINIMA
ARYIN=AMTN(1)
ABMAX=AMAX(1)
DO 101 I=11M
DO 101 J=1,N
COMP=XX(I1J)-AMIN(J)
IF(COMP)40029400394003

4002 AMIN(J)=XX(19J)
4003 COMP=XX(I,J)-AMAX(J)

IF(COMP)101910194004
4004 AMAX(J)=XX(I,J)
101 CONTINUE

IF(N-5)25092519250
251 DO 252 J=1,5

AMAX(J)=AMAX(5)
252 AMIN(J)=AMIN(1)
250 CONTINUE

N1=N
DO 108 J=19N

C COMPUTE RESOLUTION OF GRAPH
108 RAT(J)=(AMAX(J)-AMIN(J))/110.

DO 110 J=1,N
ENCRMT(J)=(AMAX(J)-AMIN(J))/44:
FND(1,J)=AMIN(J)+.05
COMP=AMIN(J)
IF(COMP)40059400694006

4005 FND(1,J)=FND(19J)-.10
4006 FND(5,...1)=AMAX(J)-.05

COMP=AMAX(J)
IF(COMP)400794008,4008

C PREPARE ORDINATE LABELS
4007 FND(5,J)=FND(5,J)-.10
4008 FND(2,J)=AMIN(J)+ENCRMT(J)+.05

COMP=END(2,..1)
IF(COMP)40099401094010

4009 FND(2,J)=-47ND(29J)-4,10
4010 FND(3,J)=AMIN(J)+(EN(RMT(J)*2.)+.05

COMP=FND(39J)
IF(COMP)40119401294012

4011 FND(39J)=FND(3,J)-.10
4012 END(4,J)=AMAX(J)-ENCRMT(J)+.05

COMP=FND(41J)
IF(COMP)4013,1109110

4013 END(49J)=FND(49J)-.10
110 CONTINUE

C PRINT LEFT HAND LABELS
WRITE(697)((FND(I,J),I=195),B(J),J=1,N1)

7 FORMAT(///1XF6.1921XF6.1921XF6.1921XF6.1921XF6.1,3XA1)
C PLOT LEFT HAND MARGIN

DO 4014 1=1959
4014 PA(I)=PDASH

WRITE(658)(PA(I),I=1059)
8 FORMAT(1X959A2)

DO 140 I=19M
DO 4015 11=1,120.

4015 PA(I1)=PBLANK
DO 121 IX=27981927

121 PA(IX)=PERIOD.
NCOMP=I

4016 NCOMP=NCOMP-10



1

IF(NCOMP)1240401794016
4017 CONTINUE

DO 123 IX=6912092
' 123 PA(IX)=PDASH
C RESCALE DATA POINTS
124 DO 135 K=19N

ZL=(XX(19K)-AMIN(K))/RAT(K)41.0
L=ZL
IF(L-1)601896019,6019

6018 L=1
6019 IF(110-L)60209602196021
6020 L=110
6021 IF(PA(L)-PBLANK)6022913096022
6022AF(PA(L)-PERIOD)6024913096024
6024 IF(PA(L)-PDASH)6025913096025
6025 PA(L)=PCROSS

GO TO 135
130 PB(K)=B(K)

PA(L)=PB(K)
135 CONTINUE

IF(ISCALE-1)60239136,6023
6 FORMAT(A1)

6023 WRITE(696)FMS
C PLOT DATA POINTS

136 WRITE(692)I9PERIOD9(PA(J)9J=19110)9PERIOD9I
2 FORMAT(1X9I39A19110A1,A19I3)

140 CONTINUE
DO 6026 1=1959

6026 PA(I)=PDASH
WRITE(698)(PA(I),I=1,59)
WRITE(697)((FND(19J)9I=195)9B(J)9J=1,N1)

142 WRITE(63)
3 FORMATC1H0510X916HPLOT DESCRIPTION/1HU,7X95HTITLE91UX99HCHARACTER9

14X97HMINIMUM94X97HMAXIMUM94X91()HRESOLUTION)
DO 122 J=19N

122 WRITE(694)(FNAM(J9K)9K=195)9B(J),AMIN(J)9AMAX(J)9RAT(J)
4 FORMAT(1X95A492X9A197XF8.393XF8.3,4XF8.3)

RETURN
END


